期刊文献+

WEAK SEQUENCE-COVERING MAPPING AND CS-NETWORK

WEAK SEQUENCE-COVERING MAPPING AND CS-NETWORK
下载PDF
导出
摘要 A mapping f: X→Y is called weak sequence-covering if whenever {ya} is a sequence in Y converging to y ∈ Y, there exist a subsequence {ynk} and xk∈f^-1(ynk)(k∈N) ,x∈f^-1 (y) such that xk→x. The main results are: (1) Y is a sequential, Frechet, strongly Frechet space iff every weak sepuence-covering mapping onto Y is quotient, pseudo-open, countably bi-quotient respectively, (2) weak sequence-covering mapping preserves cs-network and certain k-(cs-)networks, thus some new mapping theorems on k-(cs-)notworks are proved. A mapping f: X→Y is called weak sequence-covering if whenever {y_n} is a sequence in Y converging to y∈Y, there exist a subsequence {y_n_k} and x_k∈f^(-1)(y_n_k)(k∈N),x∈f^(-1)(y) such that x_k→x. The main results are: (1) Y is a sequential, Frechet, strongly Frechet space iff every weak sequence-covering mapping onto Y is quotient, pseudo-open, countably bi-quotient respectively, (2) weak sequence-covering mapping preserves cs-network and certain k-(cs-)networks, thus some new mapping theorems on k-(cs-)networks are proved.
作者 高国士
出处 《苏州大学学报(自然科学版)》 CAS 1993年第2期105-111,共7页 Journal of Soochow University(Natural Science Edition)
关键词 CS-网络 软次序收敛 FRECHET空间 映射定理 K-网络 Sequential Frechet Strongly Frechet Weak sequence-covering mapping Sequence-covering mapping cs-network cs-network k-network
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部