期刊文献+

K一致极凸空间与K一致极光滑空间 被引量:10

K-UNIFORMLY EXTREMELY CONVEX SPACE AND K-UNIFORMLY EXTREMELY SMOOTH SPACE
下载PDF
导出
摘要 引进K一致极凸空间与K一致极光滑空间的概念,它们分别是一致极凸空间与一致极光滑空间的推广.证明了K一致极凸性与K一致极光滑性具有对偶性质,即X 为K一致极凸(K一致极光滑)的,当且仅当X为K一致极光滑(K一致极凸)的;给出了K一致极凸(K一致极光滑)空间的3个特征刻画;证明了K一致极凸(K一致极光滑)蕴涵(K+1)一致极凸((K+1)一致极光滑),但反过来不成立;引进K-(WM) 性质,并利用K一致极光滑给出了自反的局部K一致光滑空间的特征刻画;证明了X 为局部K一致光滑,当且仅当X为K一致极凸且具有K-(WM)性质;证明了严格凸(光滑)的K一致极凸(K一致极光滑)空间是极凸(极光滑)空间. In this paper,the definitions of K-uniformly extreme convexity and K-uniformly extreme smoothness which are the generalization of uniformly extreme convexity and uniformly extreme smoothness respectively are introduced,and it is proved that K-uniformly extreme convexity and K-uniformly extreme smoothness are the dual notion,i.e.,X~* is K-uniformly extreme convex (resp.K-uniformly extreme smooth) if and only if X is K-uniformly extreme smooth(resp.K-uniformly extreme convex),three characterizations of K-uniformly extreme convex (resp.K-uniformly extreme smooth) space are given,K-uniformly extreme convex (resp.K-uniformly extreme smooth) space implies (K+1)-uniformly extreme convex (resp.(K+1)-uniformly extreme smooth) space are proved,but their converses are not necessarily true,one characterization of the reflexive K-uniformly smooth space by introducing the property (K-(WM)~*) and using the K-uniformly extreme smoothness are given,it is also proved that X~* is locally (K-uniformly) smooth space if and only if X is K-uniformly extreme convex space and has the property (K-(WM)),and that strictly convex (resp.smooth_) K-uniformly extreme convex (resp.K-uniformly (extreme) smooth) space is extreme convex (resp. extreme smooth) space.
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2004年第4期371-376,共6页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 内蒙古自然科学基金资助项目(20010901-05)
关键词 光滑空间 特征刻画 一致光滑 证明 严格凸 光滑性 凸性 极光 K-uniformly extremely convex(smooth) K-strongly convex (smooth) local K-uniformly convex(smooth)
  • 相关文献

参考文献5

  • 1Sullivan F. A generalization of uniformly rotund Banach spaces [J]. Canad. J. Math.,1979,31:628-636.
  • 2Suyalatu 1 and WU Congxin 2 1. Department of Mathematics,Inner Mongolia Normal University, Huhhot 010022, China,2. Department of Mathematics, Harbin Institute of Technology, Harbin 150006, China.K-uniformly rotund spaces and k-uniformly smooth spaces[J].Chinese Science Bulletin,1998,43(2):92-95. 被引量:4
  • 3Suyalatu. On Some Generalization of Local Uniform Smoothness and Dual Concepts [J]. Demonstration Mathematica,2000,(1):101-108.
  • 4Lin Berluh and Yu Xintai, On the K-uniformly round and the fully convex Banach Spaces [J]. J.Math. And . Appl . 1985, 110(2):407-410.
  • 5Smith M A,Sullivan F. Extremely Smooth Banach Spaces [J]. Lecture Notes in Math.,1977,604:125-137.

二级参考文献10

  • 1Sullivan,F.A generalization of uniformly ruotnd spaces, Canad. Journal of Mathematical . 1979
  • 2NanChaoxun,WangJianhua,OntheLK_URandL_KRspaces,Math. Proceedings of the Cambridge Philosophical Society . 1988
  • 3Yu Xintai.Geometric Theorey of Banach Spaces. . 1986
  • 4Istratescu V I.Strict Convexity and Complex Strict Convexity. . 1984
  • 5Lin Borluh,Yu Xintai.On the K_uniformly rotund and fully convex Banach spaces, J.Math. Analysis and Applications . 1985
  • 6James,R .C.Weak compactnessandreflexivity,IsraelJ. Mathematica Journal . 1964
  • 7NanChaoxun.Someremarksonthek_uniformlyconvexityandk_uniformlysmoothness. JournalofMathematicalResearchandExposition . 1990
  • 8NanChaoxun,WangJianhua.k_strictconvextyandk_smoothness. ChineseAnn . 1990
  • 9CaoWenchun.Variousk_smoothnessofnormsonBanachspace. JournalofMathematicalResearchandExposition . 1995
  • 10Suyalatu,WuCongxin.k_strongconvexityandk_strongsmoothness. ChineseAnn.Math.A .

共引文献3

同被引文献51

引证文献10

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部