期刊文献+

弹性波传播数值模拟的区域分裂法 被引量:26

A DOMAIN DECOMPOSITION METHOD FOR NUMERICAL SIMULATION OF THE ELASTIC WAVE PROPAGATION
下载PDF
导出
摘要 本文针对弹性波波场传播的数学模型 ,提出了一种基于有限元和有限差分耦合的区域分裂方法 .它有灵活的网格剖分 ,克服了单纯用差分方法对区域的依赖性 ,可以适用于曲边地表 ;达到同样精度所需的计算量比有限元方法小 ;并易于实现并行计算 . We propose a domain decomposition method based on combining the finite element method with the finite difference method for numerical simulation elastic wave propagation.The domain decomposition does not rely on the shape of computing region and is convenient to deal with irregular surface problems.The computational efficiency is raised.In addition,the idea of the domain decomposition method is easy to be implemented by the parallel computing programs.The results of numerical experiments have confirmed the effectiveness of the method.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2004年第6期1094-1100,共7页 Chinese Journal of Geophysics
基金 国家自然科学基金 ( 4 0 0 740 3 1)资助
关键词 区域分裂方法 有限差分方法 有限元方法 曲边地表 并行计算 弹性波 Domain decomposition method, Finite difference method, Finite element method, Irregular surface, Parallel computing, Elastic wave.
  • 相关文献

参考文献8

  • 1Atterman Z,Karal F C. Propation of elastic wave in layered media by finite difference methods. Bull. Seism. Soc. Am., 1968,58:367-398
  • 2Kosloff D, Reshef M, Loewenthal D. Elastic wave calculation by the Fourier method. Bull. Seism. Soc. Am., 1984, 74 (3):875-891
  • 3Ohtsuki A, Harumi K. Effect of topography and subsurface inhomogeneities on seismic SV waves. Earthquake Eng. Struct.Dyn. , 1983,11: 441-462
  • 4Moczo P,Bystricky E,Kristek J, et al. Hybrid modeling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures. Bull. Seism. Soc. Am. , 1997,87: 1305-1323
  • 5Ciarlet P G. The Finite Element Method for Elliptic Problems.North-Holland, 1978
  • 6Clayton R, Engquist B. Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Seism . Soc. Am. , 1977,67(6):1529-1540
  • 7Engquist B, Madja A. Radiation boundary conditions for acoustic and elastic wave calculations. Comm. Pure Appl. Math. , 1979,32:313-357
  • 8Thomee V. Galerkin Finite Element Methods for Parabolic Problems. Springer Verlag, 1997

共引文献1

同被引文献519

引证文献26

二级引证文献385

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部