期刊文献+

入侵检测中数据挖掘技术的应用研究分析 被引量:12

A Research into Application of Data Mining Technology in Intrusion Detection
下载PDF
导出
摘要 随着计算机的发展,它在现代社会扮演着越来越关键的角色。而网络安全正成为逐渐严重的问题,受到人们的广泛关注。本文详细分析近年来网络安全研究热点之一的入侵检测技术,概述了多种基于数据挖掘的入侵检测技术,对这些技术进行了分析和比较,并给出了一个基于数据挖掘的入侵检测系统框架。最后讨论了该领域当前存在的问题及今后的研究方向。 With the increasing growth of computer the networks play increasingly vital roles in modern society. The network security has become a serious problem. This paper analyzes intrusion detection technique which is a highlighted topic of network security research in recent years. In this paper, many intrusion detection techniques based on data mining are summarized, and meanwhile, these techniques are comnpared. Then a framework of intrusion detection based on data mining is described. Finally, the existing problems and the future direction in this field are discussed.
作者 杨德刚
出处 《重庆师范大学学报(自然科学版)》 CAS 2004年第4期27-30,共4页 Journal of Chongqing Normal University:Natural Science
基金 重庆师范大学科研基金
关键词 入侵检测技术 网络安全 数据挖掘技术 入侵检测系统 计算机 细分 角色 问题 发展 领域 intrusion detection data mining clustering analysis association analysis sequential pattern analysis
  • 相关文献

参考文献17

  • 1ANDERSON J P.Computer Security Threat Monitoring and Surveillance[R]. Technical Report,James P Anderson Co.,ort Washington, Pennsylvania, 1980.
  • 2HEADY R.LUGER G,MACCABE A, et al.The Architecture of a Network Level Intrusion Detection System[R]. Technical Report, Computer Science Department, University of New Mexico,1990.
  • 3DENNING D E. An Intrusion Detection Model[J].IEEE Transactions on Software Engineering,1987,13(2):222-232.
  • 4CHEN M S, HAN J, YU P S. Data Mining: An Overview from a Database Perspective[J]. IEEE Transaction on Knowledge and Data Engineering,1996,8(6): 866-883.
  • 5MICHAEL J A B, LINOFF G.Data Mining Techniques: For Marketing, Sales,and Customer Support[M].New York:Wiley, 1997.
  • 6JOSEPH P B. Data Mining with Neural Networks[M].New York:McGraw-Hill,1996.
  • 7USAMA M F.Gregory Piatetsky-Shapiro,Padhraic Smyth,From Data Mining to Knowledge Discovery: An Overview[A].FAYYAD U M,PIATESTKY-SHAPIRO G,SMYTH P,et al.Advances in Knowledge Discovery and Data Mining[C].AAAI Press/The MIT,1996.
  • 8LEE Wenke,STOLFO Sal,MOK Kui. Mining Audit Data to Build Intrusion Detection Models[C].New York:Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining(KDD′98),1998.
  • 9LEE Wenke. STOLFO Sal,MOK Kui.A Data Mining Framework for Building Intrusion Detection Models[C]. Oakland CA:Proceedings of the 1999 IEEE Symposium on Secruity and Privacy,1999.
  • 10LEE Wenke,STOLFO Sal.Data Mining Approaches for Intrusion Detection[C]. San Antonio,TX:Proceedings of the 7th USENIX Security Symposium,1998.

二级参考文献19

  • 1[10]Portnoy, L., Eskin, E., Stolfo, S. J. Intrusion detection with unlabeled data using clustering. In: Barbara, D ed. Proceedings of ACM CSS Workshop on Data Mining Applied to Security. Philadelphia: ACM Press, 2001.
  • 2[11]Jain, A., Dubes, R. Algorithms for Clustering Data. New Jersey: Prentice-Hall, 1988.
  • 3[12]Selim, S. Z., Ismail, M. A. K-means-type algorithm: generalized convergence theorem and characterization of local optimality. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(1): 81-87.
  • 4[13]Tseng, L. Y., Yang, S. B. A genetic approach to the automatic clustering problem. Pattern Recognition, 2001. 34(2): 415-424.
  • 5[14]Babu, G. P., Murty, M. N. Clustering with evolution strategies. Pattern Recognition, 1994, 27(2) 321-329.
  • 6[15]Murthy, C. A., Chowdhury, N. In search of optimal clusters using genetic algorithms. Pattern Recognition Letters, 1996, 17(8): 825-832.
  • 7[16]Maulik, U., Bandyopadhyay, S. Genetic algorithm-based clustering technique. Pattern Recognition, 2000, 33(9): 1455-1465.
  • 8[17]Krishna, K. Murty, M. N. Genetic K-Means Algorithm. IEEE Transactions on Systems, Man and Cybernetics(Part B), 1999, 29(3): 433-439.
  • 9[18]Michalewicz, Z. Genetic Algorithm + Data Structure = Evolution Program. New York: Springer-Verlag, 1996.
  • 10[19]Kang Li-Shan. Non-Numerical Parallel Algorithm (1)-Simulation Annealing Algorithm. Beijing: Science Press, 1997(in Chinese).

共引文献5

同被引文献60

引证文献12

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部