摘要
讨论了一类模糊滞后积分微分方程u·(t)=∫t0g(t,s,u(s))ds+f(t,xt)的性质.利用Banach不动点定理和模糊集度量空间的性质证明了这类方程解的存在性、惟一性和连续依赖性.
In this paper, the work is concerned with a class of fuzzy retarded integro-differential equations. Specifically, existence, uniqueness and continuous dependence of fuzzy solutions for the fuzzy retarded integro-differential equation u·(t)=∫~t_0g(t,s,u(s))ds+f(t,x_t), where E^n is the set of all upper semi-continuous convex normal fuzzy numbers with bounded α-level set, f,g is continuous functions, are establish via Banach fixed-point theorem and the property of metric space of fuzzy set.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2004年第6期1104-1108,共5页
Journal of Sichuan University(Natural Science Edition)
关键词
模糊数
模糊集度量空间
模糊滞后积分微分方程
模糊解
fuzzy number
metric space of fuzzy set
fuzzy retarded integro-differential equation
fuzzy solution.