期刊文献+

模糊滞后积分微分方程解的性质(英文)

The Properties of Fuzzy Solution for the Fuzzy RetardedIntegro-differential Equation
下载PDF
导出
摘要 讨论了一类模糊滞后积分微分方程u·(t)=∫t0g(t,s,u(s))ds+f(t,xt)的性质.利用Banach不动点定理和模糊集度量空间的性质证明了这类方程解的存在性、惟一性和连续依赖性. In this paper, the work is concerned with a class of fuzzy retarded integro-differential equations. Specifically, existence, uniqueness and continuous dependence of fuzzy solutions for the fuzzy retarded integro-differential equation u·(t)=∫~t_0g(t,s,u(s))ds+f(t,x_t), where E^n is the set of all upper semi-continuous convex normal fuzzy numbers with bounded α-level set, f,g is continuous functions, are establish via Banach fixed-point theorem and the property of metric space of fuzzy set.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第6期1104-1108,共5页 Journal of Sichuan University(Natural Science Edition)
关键词 模糊数 模糊集度量空间 模糊滞后积分微分方程 模糊解 fuzzy number metric space of fuzzy set fuzzy retarded integro-differential equation fuzzy solution.
  • 相关文献

参考文献17

  • 1Volterra V. Theory of functionals and integral and integrodifferential equation[M]. New York:Dover, 1959.
  • 2Kaleva O. Fuzzy differential equations[J]. Fuzzy Sets and Systems, 1987, 24:301-317.
  • 3Kaleva O. The Cauchy problem for fuzzy differential equations[J]. Fuzzy Sets and Systems, 1990, 35:389-396.
  • 4Seikkala S. On the fuzzy initial value problem[J]. Fuzzy Sets and Systems, 1987, 24:319-330.
  • 5Song S, Wu C. Exisetnce and uniqueness of solutions to Cauchy problem of fuzzy differential equations[J]. Fuzzy Sets and Systems, 2000, 110:55-67.
  • 6Wu C, Song S. Existence theorem to the Cauchy problem of fuzzy differential equations under compactness-type conditions[J]. Journal of Information Sciences, 1998, 108:123-134.
  • 7Buckley J J, Feuring T. Fuzzy initial value problem for Nth-order linear differential equations[J]. Fuzzy Sets and Systems, 2001, 121:247-255.
  • 8Buckley J J, Feuring T. Introduction to fuzzy partial differential equations[J]. Fuzzy Sets and Systems, 1999, 105:241-248.
  • 9Lakshmikantham V, Vatsala A S. Existence of fixed points of fuzzy mappings via theory of fuzzy differential equations[J]. Journal of Computational and Applied Mathematics, 2000, 113:195-200.
  • 10Lakshmikantham V, Mohapatra R N. Fuzzy sets and fuzzy differential equations, differentail equations and nonlinear mechanics (K.Vajravelu ed.)[M]. Netherlands:Kluwer Academic Publishers, 2001.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部