期刊文献+

GPS/LEO掩星技术中超折射效应的修正 被引量:5

Corrections to the Superrefraction Effects in GPS/LEO Occultation Technique
下载PDF
导出
摘要 在GPS掩星探测地球大气技术中,Abel积分变换要求大气折射指数n是折射半径a的单值函数.当大气折射率的垂直梯度达到小于一个极限值d N/dr≈-0.16N-unit m-1,上述单值性不成立,称其为超折射,此时Abel积分变换不再适用。如果还是在形式上应用经典的Abel变换,在反演结果中就会产生负大气折射率偏差.描述了低对流层中超折射现象的物理特性和数学表示;在广义Abel积分变换的基础上,讨论了超折射层内和超折射层下的大气剖面反演算法;选择丁一个简单的采样间隔内等大气折射率垂直梯度假设,对英国高分辨率无线电探空观测资料进行模拟计算,验证了负超折射与大气折射率偏差的关系,并提出的广义Abel变换的合理性. Abel inversion in GPS/LEO occultation technique requires the atmospheric index n to be a single-valued function of the refractional radius a. This condition is broken when the vertical refractivity gradient is below a critical value dN/dr - -0.16 N-units m-1, that is called superrefraction. Abel inversion is no longer valid under this condition, and, if classical Abel inversion is still formally applied, negative refractivity bias occurs in results. The physical characteristic and mathematical expression of superrefraction layer in lower troposphere are illustrated. In the frame of a general Abel inversion, inversion algorithm of refractivity in and below superrefraction layer is discussed. Under a simple assumption of constant vertical gradient of refractivity in sampling intervals, simulation process is carried out for UK High Resolution Radiosonde Data. The computational results have proved the relationship among the negative refractivity bias and superrefraction, and the validity of the general Abel inversion method proposed.
出处 《天文学报》 CSCD 北大核心 2004年第4期437-446,共10页 Acta Astronomica Sinica
基金 CXJJ-97国家自然科学基金(10073017)中国科学院知识创新工程重要方向项目KJCX2-SW-T1天文地球动力学研究中心资助
关键词 掩星 大气折射率 GPS 探空观测 地球大气 垂直梯度 对流层 ABEL积分 ABEL变换 单值函数 astrometry: GPS/LEO radio occultation, inverse process, superrefraction, N-bias
  • 相关文献

参考文献19

  • 1[1]Melbourne W G, Davis E S, Duncan C B, et al. The Application of Spaceborne GPS to Atmospheric Limb Sounding and Global Change Monitoring, JPL publication 94-8, Pasadena: JPL California institute of Technology, 1994
  • 2[2]Yunck T P, Lindal G F, Liu C H. The role of GPS in precise earth observation. In: Proceedings of IEEE Positioning Location and Navigation Symposium (PLANS 88). Orlando, Florida. Nov.29-Dec.2,1988. 251
  • 3[3]Kursinski E R, Hajj G A, Bertiger W I, et al. Sci, 1996, 271:1107
  • 4[4]Ware R M, Exner D, Feng M, et al. Bull of the American Meteorological Society, 1996, 77:19
  • 5[5]Wickert J, Reigber C, Beyerle G. Geophysical Research Letters, 2001, 28 (17): 3263
  • 6[6]Hajj G A, Ao C O, Iijima B A, et al. CHAMP and SAC-C Atmospheric Occultation Results and Intercomparisons, submitted to J. Geophys. Res., 2002.
  • 7[7]Kursinski E R, Hajj G A, Schofield T, et al. J Geophys Res, 1997, 102, D(19): 23429
  • 8[8]Ao C O, Meehan T K, Hajj G A, et al. J Geophys Res, 2003, 108(D18): 4577, doi:10.1029/2002JD003216
  • 9[9]Hajj G A, Kursinski E R, Romans L J, et al. Journal of Atmospheric and Solar-Terrestrial Physics,2002, 64, 451
  • 10[10]Sokolovskiy S. Radio Sci, 2003, 38(3), 1058, doi:10.1029/2002RS002728

同被引文献114

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部