期刊文献+

Global Optimization Approach to Non-convex Problems

Global Optimization Approach to Non-convex Problems
原文传递
导出
摘要 A new approach to find the global optimal solution of the special non-convex problems is proposed in this paper. The non-convex objective problem is first decomposed into two convex sub-problems. Then a generalized gradient is introduced to determine a search direction and the evolution equation is built to obtain a global minimum point. By the approach, we can prevent the search process from some local minima and search a global minimum point. Two numerical examples are given to prove the approach to be effective.
出处 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2004年第3期108-111,共4页 中国邮电高校学报(英文版)
关键词 global optimization non-convex function generalized gradient evolution equation global optimization non-convex function generalized gradient evolution equation
  • 相关文献

参考文献17

  • 1[1]BILBRO G L. Fast stochastic global optimization[J]. IEEE Trans System Man Cybernetics, 1995, 24(4): 684-689.
  • 2[2]KIRKPATRICK S, GELATT C D. Jr, VECCHI M P. Optimization by simulated annealing [J]. Science, 1983, 220: 671-680.
  • 3[3]RENDERS J M, FLASSE S P. Hybrid method using genetic algorithms for global optimization[J]. IEEE Trans on System Man Cybernetics: Part B, 1996, 26(2):243-258.
  • 4[4]LI B, JIANG W S. A novel stochastic optimization algorithm[J]. IEEE Trans on System Man Cybernetics: Part B, 2000, 30(1): 193-198.
  • 5[5]CHOWDHURY P R, SINGH Y P, CHANSARKAR R A. Hybridization of gradient descent algorithms with tunneling methods for global optimization[J]. IEEE Trans on System Man Cybernetics: Part A, 2000, 30(3): 384-390.
  • 6[6]ZOU Mou-yan, ZOU Xi. Global optimization: An auxiliary cost function approach [J]. IEEE Trans on System Man Cybernetics: Part A, 2000, 30(3):347-354.
  • 7[7]BARHEN J, PROTOPOPESCU V, REISTER D. Trust: A deterministic algorithm for global optimization[J]. Science, 1997, 276:1094-1097.
  • 8[8]KAUL R N, SUNEJA S K, LALITHA C S. Generalized non-smooth invexity[J]. J Information Optimization Science, 1994, 15:1-17.
  • 9[9]DEMYANOV V F, SUTTI C. Representation of the Clarke's sub-differential for a regular quasi-differentiable function[J]. J Optimization Theory and Application, 1995, 87:553-567.
  • 10[10]KUNTZ L, PIELCZYK A. The method of common descent for certain class of quasi-differentiable functions[J]. Optimization, 1991, 22:669-679.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部