期刊文献+

多传感器数据融合系统中联合概率数据互联算法的研究 被引量:3

Study of multi-sensor joint probabilistic data association in multi-sensor data fusion system
下载PDF
导出
摘要 概述了多传感器数据融合系统中的联合概率数据互联算法,给出了MSJPDA的两种处理结构,分析了其算法的复杂度。并在此基础上,结合B.Zhou提出的直接概率计算和近似概率计算的方法,提出了一种基于近似聚的近似概率数据互联算法(MSJPDA),通过仿真研究以及和最近邻法所做的比较表明,该方法确实能提高在密集情况下的数据融合精度,算法耗时与最近邻法相差不大,精确度接近完全概率互联算法。 Multi-ensor Joint Probabilistic Data Association(MSJPDA) was presented. Approximate Multi-sensor Joint Probabilistic Data Association(AMSJPDA) as a new methodology was proposed by combining B. Zhou's theory of the approximate probabilistic computing and direct probabilistic computing. The comparing AMSJPDA with NN (Nearest Neighbor) showed that using AMSJPDA could improve the precision of association in a complex environment. It demanded only a little more time than NN and the precision was as good as MSJPDA.
作者 缪臻 王宝树
出处 《计算机应用》 CSCD 北大核心 2005年第1期49-51,55,共4页 journal of Computer Applications
基金 武器装备预研资助项目(413150801)
关键词 数据融合 多传感器联合概率数据互联 近似多传感器联合概率数据互联 最近邻法 data fusion MSJPDA(Multi-Sensor Joint Probabilistic Data Association) AMSJPDA (Approximate Multi-Sensor Joint Probabilistic Data Association) NN (Nearest Neighbor)
  • 相关文献

参考文献3

  • 1ZHOU B, BOSE NK. Multitarget Tracking in Clutter: Fast Algorithms for Data Association[ J]. IEEE Trans on Aerospace and Electronic Systems, 1993, AES-29(2) : 352 - 363.
  • 2PAO LY, FREI CW. A comparison of parallel and sequential implementations of a multisensor muhitarget tracking algorithm[ A]. Proceedings of the American Control Control Conference. Washington,Conference Seattle[ C]. American1995, vol 3. 1683 - 1687.
  • 3PAO LY, FREI CW. A comparison of parallel and sequential implementations of a multisensor multitarget tracking algorithm[ A]. Proceedings of the American ControlControl Conference. Washington,Conference Seattle[ C]. American1995, vol 3. 1683 - 1687.

同被引文献27

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部