期刊文献+

基于图像分割和加权Fisher判据的彩色IC图像降维 被引量:1

Dimensionality reduction in color IC images based on image segmentation and weighted Fisher criterion
下载PDF
导出
摘要 在处理彩色集成电路(IC)图像的过程中,为了降低计算的复杂度,经常需要将彩色图像转换成灰度图像后再进行处理。本文将数据降维中优化判据的思想引入彩色图像到灰度图像的转换中。为了求得最优降维方向,必须寻找一个判据来衡量各个降维方向上形成的灰度图像的质量。文中采用加权的Fisher判据来衡量图像的质量。在将图像分割成区域后,判据中的类间距离反映了区域之间的对比度,类内距离反映了区域内部之间的均匀性,权重反映了区域之间的相邻关系。这样将图像降维分成四步,先挑选样本图像,然后用混合高斯模型进行分割,再优化带权重的Fisher判据得到最优降维方向,最后利用最优降维方向将彩色图像转换成灰度图像。在对彩色IC样本图像进行降维的实验中,该方法能得到比其他方法质量更好的灰度图像。 In order to reduce the complexity of processing of color IC images, a color image is usually transformed into a gray one before further processing. The idea in data dimensionality reduction that the optimal projection direction can be obtained by optimizing a criterion was induced into color to gray transformation in this paper. In order to get the optimal direction, a criterion to evaluate the quality of a gray image obtained by different directions was needed. A new criterion called Weighted Fisher Criterion was proposed. After a color image was segmented into different regions, the new criterion evaluated the quality of an image by encouraging inner-region smoothness and inter-region contrast, especially the contrast between the neighboring regions which could be controlled by weights in the criterion. Thus the transformation from color to gray was divided into four steps, including selecting a color sample image firstly, segmenting it into regions based on Gaussian Mixture Model, and maximizing the Weighted Fisher Criterion to get an optimal direction to transform a color image into a gray one.
出处 《计算机应用》 CSCD 北大核心 2005年第1期119-122,共4页 journal of Computer Applications
关键词 彩色IC图像 降维 图像分割 加权Fisher判据 混合高斯模型 color IC image dimensionality reduction image segmentation weighted Fisher criterion gaussian mixture model
  • 相关文献

参考文献8

  • 1边肇棋 张学工 等.模式识别[M].北京:清华大学出版社,2000.235.
  • 2SHARMA G, TRUSSELL HJ. Digital Color Imaging [ J ] . IEEE Trans Image Processing, 1997, 6(7): 901-932.
  • 3JOLLIFFE IT. Principal Component Analysis[ M]. New York: Springer Verlag, 1986.
  • 4YANG CK, TSAI WH. Reduction of Color Space Dimensionality by Moment-Preserving Thresholding and Its Application for Edge-Detection in Color Images[ J]. Pattern Recognition Letters, 1996, 17(5) :481 - 490.
  • 5BILMES JA. A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models[ R]. Technical Report ICSI-TR-97-021. University of Berkeley, 1998.
  • 6XU L, JORDAN MI. On Convergence Properties of the EM Algorithm for Gaussian Mixture[ J]. Neural Computation, 1996, 8( 1 ):129 - 151.
  • 7SHARMA G, TRUSSELL HJ. Digital Color Imaging [ J ] . IEEE Trans. Image Processing, 1997, 6(7): 901-932.
  • 8JOLLIFFE IT. Principal Component Analysis[ M]. New York: SpringerVerlag, 1986.

共引文献19

同被引文献14

  • 1付令,张建.CFP计算机飞行计划[J].技术与管理论坛,2006(3):22-27. 被引量:1
  • 2国务院,中央军事委员会.中华人民共和国飞行基本规则[s].2001.
  • 3Rogers, B. , Corwin, B. , Riley, V. , Quarry, S. , Dwyer, D.. Airborne-Based Conflict Probe NEXTOR Report RR-98-3 [R]. 1998.
  • 4Kuchar, J. K. , Yang, L. C.. A review of conflict detection and resolution modeling methods [J ]. IEEE Transactions on Intelligent Transportation Systems, 2000,1 (4) : 179 - 189.
  • 5王小宛,张永顺.航线飞行的耗油特性及其节油飞行的策略[M].北京:中国民航出版社,2005:124.
  • 6乔治·拉德诺蒂.航空运输盈利策略[M].北京:中国民航出版社,2004:192.
  • 7蒋怀宇.缩小垂直间隔(RVSM)空域的运行要求(AC-91-07)[s].中国民用航空总局飞行标准司,2007.
  • 8Fung, G.. A comprehensive overview of basic clustering algorithms [ R]. Technical report, http://www. cs. wisc. edu/-gfung/clustering.pdf, 2001.
  • 9Fisher, W. D.. On grouping for maximum homogeneity[J]. American Statistic Assocmtion Journal, 1958: 789-798.
  • 10Wang, J. , Tong, T.. Research on ordinal cluster division for maintenance road section [C]. Second International Conference on Intelligent Computation Technology and Automation, IEEE Computer Society, 2009,3 : 707-710.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部