期刊文献+

基于模糊聚类和卡尔曼滤波的运动目标检测 被引量:10

Moving objects detection based on fuzzy clustering and Kalman filtering
下载PDF
导出
摘要 提出了一种基于模糊聚类和卡尔曼滤波的多运动目标检测的技术,并将其应用于车辆的检测与跟踪。文中采用了改进的模糊C均值聚类算法,对隶属度矩阵进行了修正,加快了聚类的收敛速度;然后,运用了卡尔曼滤波对运动目标进行运动轨迹跟踪,根据视频序列的实际情况构造了相应的状态方程以及增益矩阵,对多个运动目标同时进行独立跟踪,减少了目标搜索的盲目性,提高了跟踪的可靠性和效率。 A kind of technique for detection of multiple moving objects based on fussy clustering and Kalman filtering was brought forward, and has been applied to vehicle detection and tracking. An improved fussy C mean clustering algorithm was used, in which the matrix of grade of membership was modified in order to speed up convergent velocity. Kalman filtering was used to track moving target. Corresponding state equation and plus matrix were constructed based on video sequence to track multiple moving objects at the same time. It can achieve fine object searching with more reliability and efficiency.
出处 《计算机应用》 CSCD 北大核心 2005年第1期123-124,131,共3页 journal of Computer Applications
关键词 模糊聚类 图像分割 运动估计 卡尔曼滤波 fussy clustering image segmentation motion estimation Kalman filtering
  • 相关文献

参考文献4

  • 1黄波,杨勇,王桥,吴乐南.基于模糊聚类和时域跟踪的视频分割[J].通信学报,2001,22(12):22-28. 被引量:6
  • 2PAN J, LI S, ZHANG yQ. Automatic extraction of moving objects using multiple features and multiple frames[ A]. IEEE lnt Symposium on Circuits and Systems (ISCAS) 2000[ C]. Geneva, May2000.
  • 3HONG L, WANG WC, LOGAN M, et al. Muhiplatform Muhisensor Fusion with Adaptive - Rate Data Communication[ J]. IEEE Trans on Aerospace and Electronic Systems, 1997, 33(1) : 123 - 126.
  • 4HONG L, WANG WC, LOGAN M, et al. Muhiplatform Muhisensor Fusion with Adaptive - Rate Data Communication[ J]. IEEE Trans.on Aerospace and Electronic Systems, 1997, 33(1) : 123 - 126.

二级参考文献4

共引文献5

同被引文献104

引证文献10

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部