期刊文献+

基于访问路径树的Web频繁访问路径挖掘算法研究 被引量:4

Research on Algorithm of Frequent Web Access Path Mining Based on Access Path Tree
下载PDF
导出
摘要 频繁访问路径发现是Web数据挖掘的重要研究内容。提出了一种挖掘连续频繁访问路径的高效算法:PS2算法,该算法利用访问路径树挖掘频繁扩展子路径,只需一次数据库扫描,试验表明该算法在效率上优于类Apriori的算法。 The frequent access paths discovery is an important task of Web mining study. Proposes a new efficient algorithm for mining consecutive frequent Web access path, the algorithm use access path tree to find frequent Web access path and need database scanning only once. The experiment shows that the algorithm is better than other algorithms which is based on Apriori algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2005年第1期96-98,共3页 Application Research of Computers
关键词 频繁访问路径 访问路径树 扩展子路径 Frequent Access Path Access Path Tree Span-Subpath
  • 相关文献

参考文献12

  • 1R Agrawal, R Srikant. Mining Sequential. Patterns [C].Proceedings International Conference on Data Engineering, 1995.3-14.
  • 2M S Chen, J S Park, P S Yu. Efficient Data Mining for Path Traversal Patterns[ J]. IEEE Transactions on Knowledge and Data Engineering, 1998,10( 2 ) :209-221.
  • 3J Borges, M Levene. Mining Association Rules in Hypertext Databases[ C]. Proceedings Conference on Knowledge Discovery and Data Mining, 1998. 149- 153.
  • 4J Pei, J Han,et al. Mining Access Patterns Efficiently from Web Logs[ C]. Proceedings Pacific-Asia Conference on Knowledge Discovery and Data Mining, Kyoto, Japan,2000. 396-407.
  • 5Cooley R,et al. Discovery of Interesting Usage Patterns from Web Data[ C ]. Berlin: International WEBKDD' 99 Workshop Springer Vetlag,2000. 163- 182.
  • 6J Han,et al. Mining Frequent Patterns Without Candidate Generation[ C]. Proc. ACM-SIGMOD Int Conf Management of Data, Dallas,TX ,2000. 1-12.
  • 7R Agrawal,R Srikant. Mining Sequential Patterns[C].Proceedings International Conference on Data Engineering,1995.3-14.
  • 8M S Chen, J S Park, P S Yu. Efficient Data Mining for Path Traver-sal Patterns[J]. IEEE Transactions on Knowledge and Data Enginee-ring, 1998,10(2):209-221.
  • 9J Borges, M Levene.Mining Association Rules in Hypertext Databases[C]. Proceedings Conference on Knowledge Discovery and Data Mi-ning,1998.149-153.
  • 10J Pei, J Han,et al. Mining Access Patterns Efficiently from Web Logs[C]. Proceedings Pacific-Asia Conference on Knowledge Discovery and Data Mining, Kyoto, Japan,2000.396-407.

同被引文献31

  • 1杜家强,韩其睿,王科,杜家兴.Web日志中用户频繁路径快速挖掘算法[J].计算机工程与应用,2005,41(22):164-167. 被引量:12
  • 2曹忠升,唐曙光,杨良聪.Web-Logs中连续频繁访问路径的快速挖掘算法[J].计算机应用,2006,26(1):216-219. 被引量:6
  • 3詹宇斌,殷建平,张玲,龙军,程杰仁.一种基于有向树挖掘Web日志中最大频繁访问模式的方法[J].计算机应用,2006,26(7):1662-1665. 被引量:9
  • 4Chen M S, Park J S, Yu P S. Efficient data mining for path traversal patterns. IEEE Trans on Knowledge and Data Engineering, 1998, 10(2) : 209-221.
  • 5Myra S, Luka F. A data miner analyzing the navigational behaviour of web users [ EB/OL ]. http ://www. wiwi. hu_berlin, de/- myra/w_acai99, ps. gz. 1999- 07 -16/2006 -07 -28.
  • 6Mobasher B ,Srivastava J. Data preparation for mining world wide web browsing patterns, Knowledge and Information System, 1999, 1(1) :5-32.
  • 7Wang L, Meinel C. Behaviour Recovery and Complicated Pattern definition in Web Usage Mining. Springer verlag. Berlin Heidelberg. 2004,531- 543.
  • 8章志明,余敏,黄明和.一种新的Web频繁访问模式挖掘算法[J].微计算机信息,2007(18):184-186. 被引量:4
  • 9韩家炜 范明 等.数据挖掘概念与技术[M].北京:机械工业出版社,2001,8..
  • 10WANG L,MEINEL C.Behavior Recovery and Complicated Pattern Definition in Web Usage Mining[A].Springer Verlag[C].Berlin Heidelberg,2004.531 -543.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部