摘要
本文讨论一般核超线性积分方程的多解,其中非线性项f(t,u)形式为a(t)u^r+g(t,u),g(t,u)为扰动项,文[4]的结果不适合这种带扰动项的方程。本文证明当扰动项为a(t)u^r的低阶无穷大时方程存在多解,部分解决了文[2]提出的问题。
This paper deals with the multiplicity of solutions to integral solutions with general kernel, where the nonlinearity f(t,u) has the form a(t)u^p+g(t,u), and g(t, u) is a disturbance. The results in [4] is invalid in this case. We get multiple solutions when g(t,u) is O(au^p), and partly answer the question in [2]
出处
《山东师范大学学报(自然科学版)》
CAS
1993年第2期6-10,39,共6页
Journal of Shandong Normal University(Natural Science)
关键词
积分方程
超线性
解
核
link, integral equations, superlinear