期刊文献+

基于设计模式的决策树构造系统设计

Decision Tree Constructing System Based on Design Patterns
下载PDF
导出
摘要 基于决策树构造算法 ID3和C4.5,可衍生出诸多的算法变种.本文据此提出了决策树构造系统设计过程中的“热点”问题,对“热点”问题的不同处理方式即为算法的变种.同时应用设计模式来逐一解决这些问题,这样,保证了所得的决策树构造系统具有良好的可扩展性和可复用性,可适应多种算法的变种. Decision tree is an important way of classification in Data Mining.Decision tree has some basic algorithms,such as ID3 and C4.5.CART and PUBLIC algorithms are two important algorithms.Comparing these algorithms,we can know that there are some local changes affecting the construction of decision tree.This paper concludes a lot of“hot spots” in decision tree algorithm,such as data extracting,decision tree constructing,missing value handling,test attributes criterion selecting,decision tree pruning and decision tree describing,which include the local changes in algorithm fore mentioned and the design that should have good extensibility.Design patterns are experiences of software developments and designs.Applying design patterns to handle“hot spots”,the designs and codes of decision tree constructing system only revises little when these“hot spots”changed.Thus,this paper applies design patterns to design decision tree constructing system.Obviously,this solution has good extensibility and reusability.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第1期33-36,共4页 Journal of Xiamen University:Natural Science
关键词 数据挖掘 决策树 设计模式 构造系统 算法 data mining decision tree design pattern
  • 相关文献

参考文献14

  • 1Erich GammaRichard HelmRalph Johnsonet al 李英军 等译.设计模式:可复用面向对象软件的基础[M].北京:机械工业出版社,2000..
  • 2Ruggieri S. Efficient CA. 5 [J ]. IEEE Transactions on Knowledge and Data Engineering, 2002,14 : 438- 444.
  • 3Buja A, Lee Y-S. Data Mining criteria for tree-based regression and classification[A]. Proc. 7 th Intl. Cord. on Knowledge Discovery in Data Mining[C]. New York:ACM Press,2001.27-36.
  • 4Nobel A. Analysis of a complexity based pruning scheme for classification trees[J]. IEEE Trans. Inform. Theory,2002,48(8) :2 362-2 368.
  • 5Quinlan J R. CA. 5:Programs for Machine Learning[M].San Mateo. CA: Morgan Kaufmann, 1993.
  • 6Hans Albrecht Sehrnid. Systematic framework design by generalization [J]. Communications of ACM, 1997, 40(10):48-51.
  • 7Witten I, Frank E. Data Mining: Practical Machine Learning Tools and Techniques with Java Lrnplementations[M]. San Mateo,CA: Morgan Kaufmarm,2000.
  • 8Ruggieri S. Efficient C4. 5 [J]. IEEE Transactions on Knowledge and Data Engineering, 2002,14 : 438- 444.?A
  • 9Buja A, Lee Y-S. Data Mining criteria for tree-based regression and classification[A]. Proc. 7 th Intl. Conf. on Knowledge Discovery in Data Mining [C]. New York:ACM Press,2001.27-36.?A
  • 10Nobel A. Analysis of a complexity based pruning scheme for classification trees[J]. IEEE Trans. Inform. Theory,2002,48(8) :2 362-2 368.?A

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部