期刊文献+

地物反射光谱对MODIS近红外波段水汽反演影响的模拟分析 被引量:26

The Simulation Analyze of the Effect of Surface Reflective Spectrum on the Retrieval of Water Vapor with MODIS NIR Data
下载PDF
导出
摘要 在近红外辐射传输方程的基础上,利用近红外波段水汽的不同吸收属性,在MODTRAN的模拟下,深入分析了基于MODIS近红外数据的可降水汽反演算法,并着重讨论了地物反射光谱非线性在可降水汽反演中的影响。研究结果显示,当波段间反射率之比不等于1时,MODIS近红外波段反演水汽将存在较大偏差。同时,在地物光谱库基础上,计算了不同地物反射率比值,其分布表明,大部分地物波段反射率比值不等于1。研究表明,应用现有MODIS近红外波段水汽反演算法,如果不考虑地表反射率光谱变化的影响,由地表反射光谱造成的误差最大约为反射率比值与1偏差的15倍,同时,这一误差还与大气波段透过率之比有关。 Based on the near infrared radiative transfer theory, the retrieval method of precipitable water vapor (PWV) with MODIS near infrared band data is analyzed under the simulation of radiative transfer model, MODTRAN. The effect of surface nonlinear reflective spectrum on PWV estimation is emphasized on. Both two bands ratio method and three bands ratio method are taken into account. The study indicates that the error due to the surface nonlinear reflective spectrum is very large if the reflectance ratio of water vapor band to atmospheric windows band is not equal to 1.The error is proportional to the ratio of transmittance ratio between these two bands. The ratio of band reflectance is calculated for hundreds kinds of surface material such as rocks, minerals, soils, vegetation and water in Johns Hopkins University spectral library. Most of the reflectance ratios have a considerable difference with 1.And the difference from 1 of two bands ratio method is smaller than three bands method. That indicates three bands method is predominant over two bands method. The coefficients used in three bands method is recalculated based on the spectral library. The result shows that their coefficients should be gained from the regression of whole spectral library and the sum of coefficients should be equal to 1.
出处 《遥感学报》 EI CSCD 北大核心 2005年第1期8-15,共8页 NATIONAL REMOTE SENSING BULLETIN
基金 中国科学院地理科学与资源研究所知识创新工程(CXIOGC000502 CXIOGE010402)资助。
关键词 近红外 水汽反演 辐射传输 MODTRAN MODIS near infrared water vapor retrieval radiative transfer MODIS MODTRAN
  • 相关文献

参考文献26

  • 1Anthony D. Det Genio.The Dust Settle on Water Vapor Feedback [J]. Science, 2002, 296:665-666.
  • 2Brian J. Soden.Atmospheric Physics: Enlightening Water Vapor [J].Nature, 2000, 406:247-248.
  • 3Li Z L, Jia L, Su Z, et al. A New Approach for Retrieving Preci-pitable Water from ATSR2 Split-window Channel Data over Land Area [J]. International Journal of Remote Sensing, 2003, 24:5059-5117.
  • 4Frouin R, Deschamps P Y, Lecomte P. Determination from Space of Atmospheric Total Water Vapor Amounts by Differential Absorption Near 940nm: Theory and Airborne Verification[J]. Journal of Applied Meteo., 1990, 29: 448-460.
  • 5GAO B C, Alexander F H Geotz.Column Atmospheric Water Vapor and Vegetation Liquid Water Retrievals from Airborne Imaging Spectrometer Data[J]. Journal of Geo. Res.,1990, 95: 3549-3564.
  • 6Kaufman Y J, GAO B C. Remote Sensing of Water Vapor in the Near IR from EOS/MODIS [J]. IEEE Transactions on Geosciences and Remote Sensing, 1992, 30(5): 871-884.
  • 7Tahl S, Schonermark M V. Determination of the Column Water Vapor of the Atmosphere Using Backscattered Solar Radiation Measured by the Modular Optoelectronic Scanner(MOS) [J]. Int. J. Remote Sensing, 1998, 19(17): 3223-3236.
  • 8Bennartz R, Fscher J. Retrieval of Columnar Water Vapor over Land from Backscattered Solar Radiation Using the Medium Resolution Imaging Spectrometer[J], Remote Sensing of Environment,2001, 78: 274-283.
  • 9Alishouse J C, Snyder S A, Vongsathorn J, et al. Determination of Oceanic Total Precipitable Water from the SSM/I [J]. IEEE Transactions on Geosciences and Remote Sensing, 1990, 28: 811-816.
  • 10Schulz J, Schluessel P, Grassl H. Water Vapor in the Atmospheric Boundary Layer over Oceans from SSM/I Measurements [J]. International Journal of Remote Sensing, 1993, 14(15): 2773-2789.

同被引文献311

引证文献26

二级引证文献199

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部