期刊文献+

Hilbert空间上最终范数连续半群的特征刻画 被引量:1

A Characterization of Eventually Norm Continuous Semigroups on Hilbert Space
原文传递
导出
摘要 本文研究Hilbert空间上最终范数连续半群的特征条件,仅利用半群生成元的预解式,给出Hilbert空间上C0-半群最终范数连续的一个的充要条件. In this paper, a new characterization of eventually norm continuous semigroups on Hilbert space is given. By using the resolvent of the generator, we give the sufficient and necessary conditions for the semigroups to be being eventually norm continuous.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2005年第1期75-80,共6页 Acta Mathematica Sinica:Chinese Series
基金 浙江省自然科学基金资助项目(102002)南开大学和天津大学刘辉应用数学研究中心资助项目
关键词 半群 HILBERT空间 范数 连续 特征刻画 特征条件 预解式 生成元 Hilbert space Eventually norm continuous Co-semigroup
  • 相关文献

参考文献15

  • 1Lasiecka I, Trggiani R, Analyticity of thermoelastic semigroup with coupled B. C. Part Ⅱ: the case of free boundary conditions, Ann Scuola Norm Sup Pisa Cl Sci, 1998, XXVⅡ(4): 457-497.
  • 2Joegens K, An asymptotic expansion in the tlleory neutron transport, Comm Pure Appl Math, 1958, 11:219-242.
  • 3Pazy A, Semigroup of linear operators and applications to partial differential equations, New York: Springer-Verlag, 1983, 50.
  • 4You P, Characteristic conditions for a C0-semigroup with continuity in the uniform operator topology for t > 0, Proc Amer Math Sot , 1992, 116: 991-997.
  • 5ElMennauoui O, Engel K J, On the characterization of eventually norm continuous semigroup in Hilbert space, Arch Math, 1994, 63: 437-440.
  • 6Blasco O, Martinez J, Norm continuity and related notions for semigroups on Banach space, Arch Math,1996, 66: 470-478.
  • 7Zhang L P, The characteristic of eventually continuous C0-semigroups on a Hilbert space, Systems Science and Mathematics Sciences, 1999, 12(1): 49-59.
  • 8Young R M, An introduction to nonharmonic fourier series, New York: Academic Press. INC, 1980, 101.
  • 9Lasiecka I, Trggiani R, Analyticity of thermoelastic semigroup with coupled B C Part Ⅱ: the case of free boundary conditions, Ann Scuola Norm Sup Pisa Cl Sci, 1998, XXVⅡ(4): 457-497.
  • 10Jogens K, An asymptotic expansion in the tlleory neutron transport, Comm Pure Appl Math, 1958, 11:219-242.

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部