期刊文献+

生长温度对纳米AlN薄膜的表面形貌和结晶特性的影响

Effects of temperature on the morphology and structure of AlN films deposited by reactive magnetron sputtering
下载PDF
导出
摘要 采用射频(RF)反应磁控溅射方法制备了具有原子级平滑表面的纳米AlN薄膜.利用傅立叶红外光谱(FTIR)、透射电子显微镜(TEM)、原子力显微镜(AFM)、卢瑟福背散射(RBS)等分析方法对不同实验条件下合成的AlN薄膜进行了表征,研究了不同沉积温度(室温约550℃)下的AlN薄膜的表面形貌特征和结晶特性,探讨了AlN薄膜表面形貌的变化规律及纳米薄膜的形成机制.分析结果显示:不同沉积温度下合成的AlN薄膜均具有原子量级平滑的表面,薄膜表面粗糙度(RMS)为0.2~0.4 nm,且不随沉积温度的增加而发生明显变化;薄膜的晶粒尺度为20~30nm,薄膜的折射率随沉积温度的增加而增加. AlN thin films in nano-scale and with atomistic smoothness have been grown on n-Si(100) substrates by reactive radio frequency magnetron sputtering. The films were deposited at the substrate temperatures of room temperature to 550°C. The structures and morphologies of the films have been determined by using transmission electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and Rutherford back-scattering spectroscopy. The morphological change and formation mechanisms of nano-scale AlN films have been discussed in the paper. Analysis results show that films deposited at variant temperatures are smooth in atomic level and the grains size of the film deposited at the temperature of 550°C was in the range of 20 nm to 40 nm.
出处 《功能材料》 EI CAS CSCD 北大核心 2005年第1期93-96,共4页 Journal of Functional Materials
基金 国家自然科学基金资助项目(10075009)
关键词 氮化铝 磁控溅射 表面形貌 结晶特性 Atomic force microscopy Crystal microstructure Fourier transform infrared spectroscopy Grain size and shape Magnetron sputtering Morphology Nanostructured materials Rutherford backscattering spectroscopy Semiconducting aluminum compounds Temperature Thin films Transmission electron microscopy
  • 相关文献

参考文献22

  • 1Conllins J H, Hagon P J, Pulliam G R. [J]. Ultrasonics,1970,221.
  • 2Strite S, Morkoc H. [J]. J Vac Sci Technol B,1992, 10:1237.
  • 3Ecke G, Eichhornen G, Pezoldt J, et al. [J]. Surf Coat Technol,1998, 98: 1503.
  • 4Oliveira J C, Cavaleiro A, Vieira M T. [J]. Surf Coat Technol,2000, 132: 99.
  • 5Someno Y, Sasaki M, Hirai T. [J]. Jpn J Appl Phys,1991, 30: 1792.
  • 6Rodriguez-Clemente R, Aspar B, Azema N, et al. [J].J Cryst Growth,1993, 133: 59.
  • 7Miyauchi M, Ishikawa Y, Shibata N. [J]. Jpn J Appl Phys,1992, 31: L1714.
  • 8Nyberg G A, Buhrman R A. [J]. J Vac Sci Technol A,1984, 2: 301.
  • 9Shuskas A J, Reeder T M, Paradis E L. [J]. Appl Phys Lett,1974, 24: 155.
  • 10Shiosaki T, Yamamoto T, Oda T, et al. [J]. Appl Phys Lett,1980, 36: 643.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部