期刊文献+

误差估计中矩阵求逆条件数的最优性在Hilbert空间中的推广

The Generation of Optimality in Hilbert Space about Condition Number with Respect to Inversion of Matrix in the Error Estimation
全文增补中
导出
摘要 本文利用Hilbert空间中可逆算子的极分解定理,将误差估计中矩阵求逆条件数的最优性在Hilbert空间中进行推广,证明了线性有界算子A的求逆条件数K(A)=AA-1在求算子扰动逆(A+E)-1的相对误差界中的极小性质,指出了算子求逆条件数在误差估计中为仅与算子A有关的最佳常数值. In this paper, the generation of optimality about condition number with respect to inversion of matrix in the error estimation is proved in Hilbert space. it is shown that the condition number K(A) with respect to inversion of Linear bound operator have minimalness in boundary of relative error estimation about inversion ( A+E ) -1 for disturbance of the operator, and is an optimal value, only depands on operator A .
作者 冯春
出处 《工科数学》 1998年第3期40-43,共4页 Journal of Mathematics For Technology
关键词 HILBERT空间 误差估计 最优性 条件数 极小性 可逆算子 有界算子 证明 推广 定理 the condition number K(A) with respect to inversion, error estimation, the optimal value, ill condition.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部