期刊文献+

ON CRITICAL EXPONENTS FOR SEMILINEAR HEAT EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS

ON CRITICAL EXPONENTS FOR SEMILINEAR HEAT EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS
全文增补中
导出
摘要 This paper deals with the blow up properties of solutions to semilinear heat equation u t- Δ u=u p in R N +×(0,T) with the nonlinear boundary condition -ο u ο x 1 = u q for x 1=0,t∈(0,T) .It has been proved that if max( p,q) ≤1,every nonnegative solution is global.When min (p,q) >1 by letting α=1p-1 and β=12(q-1) it follows that if max (α,β)≥N2 ,all nontrivial nonnegative solutions are nonglobal,whereas if max (α,β)<N2 ,there exist both global and nonglobal solutions.Moreover,the exact blow up rates are established. This paper deals with the blow up properties of solutions to semilinear heat equation u t- Δ u=u p in R N +×(0,T) with the nonlinear boundary condition -ο u ο x 1 = u q for x 1=0,t∈(0,T) .It has been proved that if max( p,q) ≤1,every nonnegative solution is global.When min (p,q) >1 by letting α=1p-1 and β=12(q-1) it follows that if max (α,β)≥N2 ,all nontrivial nonnegative solutions are nonglobal,whereas if max (α,β)<N2 ,there exist both global and nonglobal solutions.Moreover,the exact blow up rates are established.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1998年第4期363-372,共10页 高校应用数学学报(英文版)(B辑)
关键词 Semilinear heat equations nonlinear boundary conditions critial exponent blow-up rate Semilinear heat equations nonlinear boundary conditions critial exponent blow-up rate
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部