期刊文献+

SOME EXTENSIONS OF PALEY-WIENNER THEOREM 被引量:1

SOME EXTENSIONS OF PALEY-WIENNER THEOREM ***
全文增补中
导出
摘要 The Shannon's sampling theorem has many extensions, two of which are to wavelet subspaces of L 2(R) and to B 2 π =:{f(x,y)∈ L 2(R 2), supp ×} , where supp denotes the support of the Fourier transform of a function f . In fact, the Paley Wienner theorem says that each f in B 2 π can be recovered from its sampled values {f(x n,y m)} n,m if (x n, y m) satisfies |x n-n|L<14 and |y m-m| L<14 . Unfortunately this theorem requires strongly the product structure of sampling set {(x n, y m)} m,n∈ Z . This paper gives a sampling theorem in which the sampling set has a general form {(x nm , y nm )} . In addition, G.Walter′s sampling theorem is extended to wavelet subspaces of L 2(R 2) and irregular sampling with the general sampling set {(x nm ,y nm )} is considered in the same spaces. All results in this work can be written similarly in n -dimensional case for n2 .
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 1998年第3期331-340,共10页 数学年刊(B辑英文版)
关键词 Sampling Paley-Wienner theorem WAVELETS 抽样 佩利-维纳定理 小波变换 辐角
  • 相关文献

同被引文献4

  • 1Unser M.Sampling-50 years after Shannon[J].Proceedings of IEEE,2000,88(4):569 ~ 587.
  • 2Walter G G.A sampling theorem for wavelet subspaces[J].IEEE Trans Inform Theory,1992,38(2):881 ~ 884.
  • 3Long R L,Chen D R.Biorthogonal wavelet bases on Rn[J].Appl Comp Harmonic Anal,1995,3(2):230 ~ 242.
  • 4Boor de C,DeVore R A,Ron A.On the construction of multivariate (pre)wavelets[J].Constr Approx,1993,9(2):123~ 166.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部