期刊文献+

基于观测器的模型不确定的耦合时空混沌H_∞跟踪控制 被引量:1

H_∞ tracking control for coupled spatio-temporal chaos with uncertain model based on fuzzy observers
原文传递
导出
摘要 考虑子系统的时空耦合作用及模型的不确定性 ,实现模型不确定的耦合时空混沌的跟踪控制非常困难 .然而耦合时空混沌的每个子系统用一系列模糊逻辑模型逼近 ,同时考虑子系统状态的不可测性 ,采用模糊观测器来估计子系统的状态 .由于混沌模型的很多参数和动态特性很难准确地确定即模型具有不确定性 ,因此在用模糊模型逼近的同时定会产生建模误差 .基于模糊模型及状态观测器 ,考虑混沌模型的不确定性 ,提出一种H∞ 模糊跟踪控制方法 ,实现模型不确定性的耦合时空混沌的鲁棒跟踪控制 .将控制方案表征为求解线性矩阵不等式问题 ,并用凸优化方法求解控制器参数 ,确保系统的全局渐近稳定性 .仿真验证了所提方案的有效性 . Due to the interactions among coupled spatio-temporal subsystems and the model uncertainties,it is difficult to achieve tracking control for coupled spatio-temporal chaos with uncertain model. However,every subsystem of the coupled spatio-temporal chaos is approximated by a set of fuzzy models. Considering that the states of the subsystems are not all available,a set of fuzzy observers are proposed to estimate these states. Because it is very difficult to exactly eliminate many parameters and dynamic characters of the chaotic system,that is to say,the system model is uncertain,there can be deviation between the fuzzy models and the real chaotic system due to approximation error. Based on these fuzzy models and observers,considering the model uncertainties,a H ∞ fuzzy tracking control scheme is proposed,and the robust tracking control for the coupled spatio-temporal chaos with the uncertain model is achieved by the above scheme. A linear matrix inequality is employed to represent the feedback controller,the parameters of the controller being obtained by using the convex optimization techniques of linear matrix inequalites. The stability of the system is guaranteed and the tracking performances are tested by a simulation example.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2004年第12期4120-4125,共6页 Acta Physica Sinica
基金 国家自然科学基金 (批准号 :60 10 2 0 0 2 ) 霍英东教育基金(批准号 :810 5 7)资助的课题~~
关键词 鲁棒跟踪控制 不确定 实现模型 模糊观测器 凸优化 线性矩阵不等式 逼近 时空混沌 求解 混沌模型 coupled spatio-temporal chaos,fuzzy models,fuzzy observers, H ∞ fuzzy tracking control,linear matrix inequalities
  • 相关文献

参考文献17

  • 1[1]Davison E J 1994 Automatic 10 309
  • 2[3]Chen B S, You W S 1987 IEEE Tran. Automatic Contr. 32 1131
  • 3[5]Chen B S, Tseng C S 1999 IEEE Tran. Fuzzy Syst. 7 571
  • 4[6]Yue D 2003 Acta Phys. Sin. 52 292(in Chinese)[岳东 2003 物理学报 52 292]
  • 5[7]Tseng C S, Chen B S 2001 IEEE Tran. Fuzzy Syst. 9 381
  • 6[8]Chen B S, Lee C H, Chang Y C 1996 IEEE Trans. Fuzzy Syst. 4 32
  • 7[10]Tseng C S, Chen B S 2001 IEEE Tran. Fuzzy Syst. 9 795
  • 8[11]Chen S H, Liu L M, Liu J 2002 Chin. Phys. 11 543
  • 9[12]Wu Z Q 2002 Acta Phys. Sin. 51 1193(in Chinese)[吴忠强 2002 物理学报 51 1193]
  • 10[13]Mu J, Tao C, Du G H 2003 Chin. Phys. 12 381

同被引文献9

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部