期刊文献+

基于小波域HMT模型的图像复原 被引量:1

Image Restoration Based on Wavelet-Domain Hidden Markov Tree Model
下载PDF
导出
摘要 小波域隐马尔可夫树(HMT)模型采用混合高斯模型刻画各子带系数的概率分布,并通过小波系数隐状态在多个尺度之间的Markov依赖性来刻画自然图像小波系数随尺度呈指数衰减的特性.提出了基于小波域HMT模型的图像复原算法作为自然图像的先验模型,将图像复原问题转化为一个约束优化问题并用共轭梯度法对其进行求解.实验结果表明,该算法较好地再现了各种边缘信息,复原出的图像在信噪比和视觉效果方面都有显著的提高. Wavelet-domain HMT models the dependencies of multiscale wavelet coefficients through the state probabilities of the wavelet coefficients,whose distribution densities can be approximated by the Gaussian mixture model.The algorithm presented in this paper specifies the prior distribution of the real-world image through wavelet-domain HMT model and converts the restoration problem to an constrained optimization one which can be solved with the conjugate gradient method.Experimental results show that the algorithm properly retrieves various kinds of edges and the PSNR and subjective visual effect of the restored images are improved significantly.
出处 《吉首大学学报(自然科学版)》 CAS 2004年第3期75-78,共4页 Journal of Jishou University(Natural Sciences Edition)
关键词 图像复原 小波域 算法 边缘信息 混合高斯模型 约束优化问题 子带 刻画 马尔可夫 问题转化 image restoration wavelet transform hidden markov tree model conjugate gradient method
  • 相关文献

参考文献9

  • 1[1]ANDREWS H C,HUNT B R.Digital Image Restoration[M].New Jersey:Prentice Hall,Englewood Cliffs,1977.
  • 2[2]MALLAT S. A Wavelet Tour of Signal Processing[M]. C.A:Academic Press, 1998.
  • 3[3]BELGE M,KILMER M E,MILLER E L.Wavelet Domain Image Restoration with Adaptive Edge-Preserving Regularization[J]. IEEE Trans. Image Processing, 2000, 9(4):597-608.
  • 4[4]MULLER P,VIDAKOVIC B.Bayesian Inference in Wavelet Based Models[M].New York:Springer-Verlag,1999.
  • 5[5]JALOBEANU A, BLANC-FéRAUD L,ZERUBIA J.Satellite Image Deblurr ing Using Complex Wavelet Packets[J]. International Journal of Computer Vision. 2003,51(3): 205-217.
  • 6[7]ARCHER, TITTERINGTON D M.On Some Bayesian Regularization Met hods for Image Restoration[J].IEEE Trans.Image Processing,1995,14(7):989 -995.
  • 7[8]CROUSE M S, NOWAK R D, BARANIUK R G. Wavelet-Based Statistical Signal Processing Using Hidden Markov Models[J]. IEEE Trans. Signal Processing, 1 998, 46(4): 886-902.
  • 8[10]VOGEL C R, OMAN M E. Fast, Robust Total Variation-Based Reconstr ucti on of Noisy, Blurred Images[J]. IEEE Transaction on Image Processing,1998,7(7 ):813-824.
  • 9[11]OSHER S, RU DIN L I, FATEMI E. Nonlinear Total Variation Based Noise Removal Algorithms[J].Phys.D,1992,60: 259-268.

同被引文献6

  • 1Andrews H C,Hunt B R.Digital image restoration[M].Englewood Cliffs:Prentice-Hall,1977:113-125.
  • 2Belge M,Kilmer M E,Miller E L.Wavelet domain image restoration with adaptive edge-preserving regularization[J].IEEE Trans Image Processing,2000,48(4):597-608.
  • 3Wan Y,Nowak R D.A wavelet-based statistical model for image restoration[C] // Proceedings of International Conference on Image Processing.Greece:IEEE Press,2001,598-601.
  • 4Crouse M S,Nowak R D,Baraniuk R G.Wavelet-based statistical signal processing using hidden Markov models[J].IEEE Trans Image Processing,1998,46(4):886-902.
  • 5Fang G L,Xia X G.Wavelet-based statistical image processing using hidden Markov tree models[J].IEEE Trans Signal Processing,1998,46(6):886-902.
  • 6Neelamani R,Choi H,Baraniuk R.ForWaRD:Fourierwavelet regularized deconvolution for ill-conditioned systems[J].IEEE Trans Signal Processing,2004,52(2):418-433.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部