期刊文献+

Finding Periodic Solutions of Ordinary Differential Equations by the Homotopy Method 被引量:1

Finding Periodic Solutions of Ordinary Differential Equations by the Homotopy Method
下载PDF
导出
摘要 As an important aspect of applications, it is discussed how to find periodic solutions for ordinary differential equations. By using the homotopy method, a global method for finding those solutions is proposed. As an important aspect of applications, it is discussed how to find periodic solutions for ordinary differential equations. By using the homotopy method, a global method for finding those solutions is proposed.
出处 《Northeastern Mathematical Journal》 CSCD 2004年第3期369-378,共10页 东北数学(英文版)
关键词 homotopy method finding periodic solution global convergence comparison principle homotopy method, finding periodic solution, global convergence, comparison principle
  • 相关文献

同被引文献8

  • 1Franco D,Nieto J J,O'Regan D.Anti-periodic Boundary Value Problem for Nonlinear First Order Ordinary Differential Equation[J].Math Ineq Appl,2003,6(3):477-485.
  • 2Aftabizadeh A R,Huang Y K,Pavel N H.Nonlinear Third-order Differential Equations with Anti-periodic Bounary Conditons and Some Opimal Control Problems[J].J Math Anal Appl,1995,192(1):266-293.
  • 3Aizicovici S,McKibben M,Reich S.Anti-periodic Solutions to Nonmonotone Evolution Equations with Discontinuous Nonlinearities[J].Nonlinear Anal,2001,43(2):233-251.
  • 4CHEN Yu-qing.Anti-periodic Solution for Semilinear Evolution Equations[J].J Math Anal Appl,2006,315(1):337-348.
  • 5Kellogg R B,Li T Y,Yorke J A.A Constructive Proof of the Brouwer Fixed Point Theorem and Computational Results[J].SIAM J Numer Anal,1976,13:473-483.
  • 6Smale S.A Convergent Process of Price Adjustment and Global Newton Methods[J].J Math Econ,1976,3(2):1-14.
  • 7LI Yong,LU Xian-rui.Continuation Theorems to Boundary Value Problems[J].J Math Anal Appl,1995,190(1):32-49.
  • 8LU Xi-guan,LI Yong,SU Yi.Finding Periodic Solutions of Ordinary Differential Equations via Homotopy Method[J].Appl Math Comput,1996,78(1):1-17.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部