期刊文献+

算子代数上保零积的可加映射(英文)

Additive Maps Preserving Zero-product on Operator Algebras
下载PDF
导出
摘要 本文分别刻画了Hilbert空间上自伴算子空间和对称算子空间上双边保零积的可加满射,Hilbert空间上包含单位元和所有有限秩算子的 子代数上双边保半正交性的可加满射,以及vonNeumann代数上,C 代数上和Banach空间标准算子代数上保约当零积的可加或线性满射. In this paper we give some characterizations of the surjective additive maps on the space of self-product in both directions, the surjective additive maps on the unital *-subalgebras containing all finite rank operators which preserve semi-orthogonality in both directions as well as the surjective additive (or linear) maps on the unital *-subalgebras containing all finite rank operators which preserve semi-orthogonality in both directions as well as the surjective additive (or linerar) maps on such operator algebras as von Neumann algebras, C~*-algebras and standard operator algebras which preserve Jordan zero-product.
出处 《山西师范大学学报(自然科学版)》 2004年第4期21-25,共5页 Journal of Shanxi Normal University(Natural Science Edition)
基金 国家自然科学基金项目资助(编号:10071046) 山西省自然科学基金项目资助(编号:20021005).
关键词 算子代数 满射 Hilbert空间 VONNEUMANN代数 单位元 C^*代数 半正 上包 标准 对称 Preserving map Zero-product Semi-orthogonality Jordan zreo-products
  • 相关文献

参考文献7

  • 1[1]Chebotar M A, Ke W F, Lee P H, etal.Mappings preserveing zero products[J].Studia Math., 2003,155(1):77~94.
  • 2[2]Jesús Araujo, Krysztof Jarosz. biseparating maps between operator algebras[J].J.Math. Anal.Appl.,2003,282:48~55.
  • 3[3]Hou J C, Zhan X L.Ring isomorphisms and linear or additive maps preserving zero products on nest algebras[J].Lin.Alg. Appl.,2004,387:343~360.
  • 4[4]Gyry, Molnr,emrl.Linear rank and corank preserving maps on B(H) and applition to *-semigroup isomorphisms of operator ideals[J]. Linerar Algebra Appl.,1998,280:253~266.
  • 5[5]Cui J L, Houi J C, Park C G.Indefinite orthogonality preserving additive maps[J]. Archiv der Math. to appear.
  • 6[6]Pearcy C, Topping D.Sums of small numbers of idempotents[J].Michigan Math. J.1967,14:453~465.
  • 7[7]Brown L G, Pedersen G K.C*-algebras of real rank zero[J].J. Funct.Anal,1991,99:131~149.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部