摘要
考虑延迟多重休假的Mx/G/1排队,在假定延迟时间、休假时间和服务时间都是一般概率分布函数下,研究了队长的瞬态和稳态性质.通过引进"服务员忙期",导出了在任意时刻t瞬态队长分布的L变换的递推表达式和稳态队长分布的递推表达式,以及平稳队长的随机分解.
This paper considers the M^x/G/1 queue with delay multiple server vacations. Assuming that the delay time, the vacation time and the service time have general distribution functions, this paper studies the transient and equilibrium properties of the queue length. By introducing the server busy period and using the different technique the paper derives the recursive expression of the L-transformation of the transient queue length distribution at time t, the recusive expression of the equilibrium queue length distribution, and the stochastic decomposition of the queue length at a random point in equilibrium.
出处
《系统工程学报》
CSCD
2004年第6期583-588,共6页
Journal of Systems Engineering
基金
教育部高校骨干教师资助计划基金资助项目([2000]65)
四川省学术与技术带头人培养基金资助项目([2001]16)
电子科技大学校青年基金资助项目(YF021102).
关键词
延迟
休假
队长
瞬态分布
平稳分布
随机分解
delay
server vacation
queue length
transient distribution
equilibrium distribution
stochastic decomposition