期刊文献+

一类二阶三点边值问题正解的存在性

Existence of positive solutions to a second order three-point boundary value problem
下载PDF
导出
摘要 运用Leray Schauder不动点定理,讨论了边值问题 u″(t)+λa(t)f(u)=0, 0<t<1 u′(0)=0, αu(η)=u(1) 正解的存在性.其中η∈(0,1),α∈(0,1)是常数,允许a∈C[0,1]变号,f(0)>0,且λ充分小. The existence of positive solutions of boundary value problemsu″(t)+λa(t)f(u)=0, 0<t<1u′(0)=0, αu(η)=u(1)is discussed by using Leray-Schauder fixed point theorem.Where η∈(0,1),0<α<1 are fixed constants,a∈C[0,1] may change sign, f(0)>0,and λ is sufficiently small.
作者 李杰梅
出处 《西北师范大学学报(自然科学版)》 CAS 2005年第1期7-9,15,共4页 Journal of Northwest Normal University(Natural Science)
关键词 三点边值问题 正解 LERAY-SCHAUDER不动点定理 three-point boundary value problem positive solution Leray-Schauder fixed point theorem
  • 相关文献

参考文献12

  • 1II'in V A, Moiseev E. Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator [ J ]. Differential Equations, 1987,23(8): 979--987.
  • 2II'in V A, Moiseev E. Nonloeal boundary value problem of the first kind for a Sturm- Liouville operator in its differential and finite difference aspects[J]. Differential Equations, 1987, 23(7) : 803-810.
  • 3Gupta C P. Solvability of a three point nonlinear boundary value problem for a second ordinary differential equation[J]. J Math Anal Appl, 1992,168: 540-557.
  • 4MAR Y. Multiplicity of positive solutions for second order three point boundary value problem[J].Comput Math Appl, 2001, 40: 193-204.
  • 5FENG W Y. On a m-point nonlinear boundary value problem[J]. Nonlinear Analysis(TMA), 1997, 30(6): 5369-5374.
  • 6MA R Y. Positive solutions of a nonlinear threepoint boundary value problem [J] Eectronic J Differential Equations, 1998, 34: 1-8.
  • 7Gupta C P. A sharper condition for solvability of a three-point second order boundary value problem[J].J Math Anal Appl, 1997, 205: 579-586.
  • 8MAR Y. Positive solutions to a second order threepoint boundary value problem [J]. Appl Anal,2000, 76(3-4), 231-239.
  • 9Il'in V A, Moiseev E. Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator [ J ]. Differential Equations, 1987,23(8): 979-987.
  • 10Il'in V A, Moiseev E. Nonlocal boundary value problem of the first kind for a Sturm- Liouville operator in its differential and finite difference aspects[J]. Differential Equations, 1987, 23(7) : 803-810.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部