期刊文献+

Structures and Interactions of Soliton in (2+1)-Dimensional Generalized Nizhnik-Novikov-Veselov Equation

Structures and interactions of soliton in (2+1)-dimensional generalized Nizhnik-Novikov-Veselov equation
下载PDF
导出
摘要 A variable separation approach is used to obtain exact solutions of the (2+1)-dimensional generalized Nizhnik-Novikov-Veselov equation. Two of these exact solutions are analyzed to study the interaction between a line soliton and a y-periodic soliton (i.e. the array of the localized structure in the y direction, which propagates in the x direction) and between two dromions. The interactions between a line soliton and a y-periodic soliton are classified into several types according to the phase shifts due to collision. There are two types of singular interactions. One is the resonant interaction that generates one line soliton while the other is the extremely repulsive or long-range interaction where two solitons interchange each other infinitely apart. Some new phenomena of interaction between two dromions are also reported in this paper, and detailed behaviors of interactions are illustrated both analytically and graphically.
作者 RUANHang-Yu
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第1期31-38,共8页 理论物理通讯(英文版)
基金 浙江省自然科学基金,浙江省宁波市博士基金,the State Kev Laboratory of Oil and Gas Reservoir Geology and Exploitation
关键词 interaction between two solitons variable separation approach GNNV equation 孤波交互作用 变量分离分支 GNNV方程 非线性偏微分方程
  • 相关文献

参考文献14

  • 1[1]M.J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transformation, SIAM, Philadelphia (1981).
  • 2[2]I. Loutsenko and D. Roubtsov, Phys. Rev. Lett. 78(1997) 3011; M. Tajiri and H. Maesono, Phys. Rev. E55(1997) 3351; G.C. Das, Phys. Plasmas 4 (1997) 2095; M.Gedalin, T. C. Scott, and Y.B. Band, Phys. Rev. Lett. 78(1997) 448; S.Y. Lou, Commum. Theor. Phys. (Beijing,China) 33 (2000) 7.
  • 3[3]M. Tajiri and Y. Murakami, J. Phys. Soc. Jpn. 58 (1989)3029.
  • 4[4]R. Hirota, Phys. Rev. Lett. 27 (1971) 1192.
  • 5[5]H.Y. Ruan and Y.X. Chen, Phys. Rev. E62 (2000) 5738.
  • 6[6]H.Y. Ruan and Y.X. Chen, J. Math. Phys. 40 (1999) 248.
  • 7[7]R. Radha and M. Lakshmanan, J. Math. Phys. 35 (1994)4746.
  • 8[8]P.G. Estévez and S. Leble, Inverse Probl. 119 (1995) 25.
  • 9[9]M. Boiti, J.J.P.M. Manna, and F. Penpinelli, Inverse Probl. 2 (1986) 271; 3 (1987) 25.
  • 10[10]M.J. Ablowitz and P. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, Lecture Svotes Series 149, Cambridge University Press, Cambridge (1991) p. 269.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部