期刊文献+

碰摩转子─滑动轴承系统的分岔与混沌 被引量:5

CHAOS AND BIFURCATIONS OF A JOURNAL BEARING-ROTOR SYSTEM DUE TO ROTOR-TO-STATOR CONTACTS
下载PDF
导出
摘要 以采用短轴承模型的 4自由度碰摩转子滑动轴承系统为力学模型 ,以转子角速度比、无量纲转子质量不平衡量、静子与转子刚度比和静子与转子间的动滑动摩擦因数为参变量 ,运用数值方法结合Floquet理论 ,研究系统稳态同步运动的分岔特性 ,在一定的参数域内得到系统的倍周期分岔和Hopf分岔的分岔参数曲面 ,证实分岔后混沌运动的存在。研究结果表明 :大的静子转子刚度比或大的静子与转子间的动滑动摩擦因数均易于导致系统结构失稳 ,表现为它们均存在各自的临界值 ,超过这个临界值后 ,系统的稳定同步运动参数区域急剧缩小 ,在原先的稳定同步运动参数区域内将产生包括混沌运动在内的复杂运动。 The mechanical model is a four degrees of freedom journal bearing-rotor system with short-bearing approximation. A method that combines numerical analysis with Floquet theory is applied to study the bifurcations of its steady synchronous motion. With the rotating speed ratio and the non-dimensional unbalance of the rotor, the stator-to-rotor stiffness ratio and the coefficient of friction between stator and rotor as parameters, the parameter surfaces of both period doubling bifurcation and Hopf bifurcation are acquired in certain parameter region, the exist of chaotic motion after bifurcation is demonstrated. The result shows that large stiffness ratio or large coefficient of frication can cause the system easy to lose structural stability, both of them possess its threshold respectively, once the threshold is exceeded the parameter region of the steady synchronous motion will become small greatly, the complex motions, including chaotic motion, will emerge in the original domain of stability.
作者 孟泉 王洪礼
出处 《机械强度》 CAS CSCD 北大核心 2004年第6期596-599,共4页 Journal of Mechanical Strength
基金 博士点基金 (2 0 0 0 0 0 562 4 )的资助
关键词 碰摩 转子滑动轴承系统 临界值 分岔 混沌 Rotor-to-stator contact Journal bearing-rotor system Threshold Bifurcation Chaos
  • 相关文献

参考文献6

  • 1Muszynska A. Rotor-to-stationary element rub-related vibration phenomena in rotating machinery-Literature survey. The Shock and Vibration Digest,1989,21(3): 3 ~ 11.
  • 2ZHONG YiE, HE YangZong, WANG Zheng, et al. Rotor dynamics. Beijing:Tsinghua University Press,1987(In Chinese)(钟一谔,何衍宗,王正,等,转子动力学,北京:清华大学出版社,1987).
  • 3Beatty R F. Differentiating rotor response due to radial rubbing. Trans ASME, Journal of Vibration, Acoustics, Stress, and Reliability in Design,1985,107:151 ~ 160.
  • 4Chu F,Zhang Z Periodic. Quasi-periodic and chaotic vibration of a rub-impact rotor system supported on oil film bearings. International Journal of Engineering Science, 1997,35(10-11): 963 ~ 973.
  • 5Li T, York J A.Period 3 implies chaos. Monthly:Amer. Math. ,1975.82.
  • 6Grassberger P, Prosaic I. Characterization of strange attractors. Physics Review Letters, 1983,50:346 ~ 349.

同被引文献55

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部