期刊文献+

完全二部图K_(3,3)的s-正则二面体覆盖 被引量:1

s-regular Dihedral Coverings of the Bipartite Graph K_(3,3)
下载PDF
导出
摘要 将图称为s正则的,如果它的自同构群作用在它的s弧集上是正则的.Feng和Kwak分类了6阶完全二部图K3,3上保纤维自同构群弧传递的连通s正则循环覆盖.现在,证明了不存在K3,3上保纤维自同构群弧传递的连通s正则二面体覆盖. A graph is s-regular if its automorphism group acts regularly on the set of its s-arcs.Feng and Kwak classified all connected s-regular cyclic coverings of the bipartite graph K_(3,3) for each s≥1 whose fibre-preserving automorphism groups act arc-transitively.It is shown that there is no connected s-regular dihedral coverings of K_(3,3) whose fibre-preserving automorphism groups act arc-transitively.
出处 《河北师范大学学报(自然科学版)》 CAS 北大核心 2005年第1期1-3,共3页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金资助项目(10071002)
关键词 正则 完全二部图 自同构群 群作用 连通 证明 覆盖 纤维 传递 循环 s-regular graphs s-arc-transitive graphs regular coverings
  • 相关文献

参考文献7

  • 1TUTTE W T.A family of cubical graphs [J].Proc Camb Phil Soc,1947,43:459-474.
  • 2TUTTE W T.On the symmetry of cubic graphs [J].Canad J Math,1959,11:621-624.
  • 3GROSS T L,TUCKER T W.Generating all graph coverings by permutation voltage assignment [J].Discrete Math,1977,18:273-283.
  • 4MALNIC A.Group actions,coverings and lifts of automorphisms [J].Discrete Math,1998,182:203-218.
  • 5HONG S,KWAK J H,LEE J.Regular graph covering transformation groups have the isomorphism extension property [J].Discrete Math,1996,168:85-105.
  • 6FENG Y Q,KWAK J H.Constructing an infinite family of cubic 1-regular graph [J].European J Combin,2002,23:559-565.
  • 7FENG Y Q,KWAK J H.s-regular cyclic coverings of the complete bipartite graph K3,3[J].J Graph Theory,2004,45:101-112.

同被引文献7

  • 1[1]W.T.Tutte.A family of cubical graphs[J].Proc.Camb.Phil.Soc,1947,43:459-474.
  • 2[2]W.T.Tutte.On the symmetry of cubic graphs[J].Canad.J.Math,1959,11(4):621-624.
  • 3[3]T.L.Gross,T.L.Tucker,T.W..Generating all graph coverings by permutation voltage assignment[J].Discrete Math,1977,183273-283.
  • 4[4]A.Malni c.Group actions,coverings and lifts of automorphisms[J].Discrete Math,1998,182:203-218.
  • 5[5]S.Hong,J.H.Kwak,J.Lee.Regular graph covering transformation groups have the isomorphism extension proerty[J].Discrete Math,1996,168:85-105.
  • 6[7]Y.Q.Feng,J.H.Kwak.Constructing an infinite family of cubic 1-regular graph[J].European J.Combin,2002,23:559-565.
  • 7[8]Y.Q.Feng,J.H.Kwak.s-Regular cyclic coverings of the complete bipartite graph K3.3[J].J.Graph Theory,2004,45:101-112.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部