期刊文献+

单纯形空间中的四元数分形集的构造与分析 被引量:3

Construction and Analysis of Quaternion Fractal Set in a Simplex Space
下载PDF
导出
摘要 应用逃逸时间算法,在高维动力空间中利用四元数及其性质构造了一系列Mandelbrot和Julia集,并对四元数M集的界做出了估计·通过单纯形坐标体系下的投影变换,得到了四维Bannach空间与三维Euclid空间的对应关系,并应用这一对应关系得到了四元数M集与J集在三维空间中的映像·为分形理论在多维动力系统的研究与发展,提供了一个有益的探讨和尝试· Uses the escape-time algorithm to construct a series of M-J sets and estimates the boundary of the M set of the quaternion, based on the characteristics of quaternion in higher dimensional dynamic space. The corresponding relationship between 4-D Bannach space and 3-D Euclid space is given through a projection transform in simplex coordinate system and, further, the relationship is used to get the mapping of the M-J set of quaternion in a 3-D space. A constructive exploration and trial pre thus provided for the research and development of fractal theory in multidimensional dynamic space.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第1期39-42,共4页 Journal of Northeastern University(Natural Science)
基金 教育部博士点专项科研基金资助项目(20030145030)
关键词 分形理论 单纯形 四元数Banach空间 投影变换 逃逸时间算法 fractal theory simplex quaternion banach space projection transform escape-time algorithm
  • 相关文献

参考文献11

  • 1Falconer K J. Fractal geometry-mathematical foundation and applications[M]. London: John Wiley and Son, 1990.320-329.
  • 2Peitgen H O, Saupe D. The science of fractal images[M]. Berlin: Springer-Verlag, 1988.137-218.
  • 3Nicol R, Smith P, Raggatt P R. The use of the simplex method for the optimization of non-linear functions on a laboratory microcomputer[J]. Comput Biol Med, 1986,16(2):145-152.
  • 4Kuipers J. Quaternions and rotation sequences: a primer with applications to orbits, aerospace, and virtual reality[M]. reprint edition. Princeton: Princeton University Press, 2002.201-258.
  • 5Gsponer A, Pierre J. The physical heritage of Sir W. R. Hamilton[EB/OL]. http:∥arxiv.org/PS-cache/math-ph/pdf/0201/0201058, 2002-11-28.
  • 6Gujar U G, Bhavsar V C. Fractals from z←zα+c in the complex c-plane[J]. Computers & Graphics, 1991,15(3):441-449.
  • 7Chen N, Zhu W Y. Bud-sequence conjecture on M fractal image and M-J conjecture between c and z planes from z←zw+c(w=α+iβ)[J]. Comput & Graphics, 1998,22(4):537-546.
  • 8邓学工,宋春林,李志勇,朱伟勇.复映射族z^(-2)+c广义M集的标度性质[J].东北大学学报(自然科学版),2003,24(4):334-337. 被引量:1
  • 9Dixon, Stephen L, Kevin L, et al. Generation and graphical analysis of Mandelbrot and Julia sets in more than four dimensions[J]. Computers & Graphics, 1996,20(3):451-456.
  • 10Terry W G. Artist's statement CQUATSF a non-distributive quad algebra for 3D renderings of Mandelbrot and Julia sets[J]. Computers & Graphics, 2002,26(2):367-370.

二级参考文献8

  • 1Feigenbaum M J. Universality in nonlinear system[M]. Los Alamos Science, 1980.14-27.
  • 2Feigenbaum M J. Quantitative Universality for a class of nonlinear transfomation[J]. J Statistics Phys, 1978,19(6):25-52.
  • 3Mandelbrot B B. The fractal geometry of nature[M]. San Fransisco: Freeman WH, 1982.1-10.
  • 4Gujar U G, Bhavsar V C. Fractals from z←za+c in the complex c-plane[J]. Computers & Graphics, 1991,15(3):441-449.
  • 5Chen N, Zhu W Y.Bud-sequences conjecture on M fractal image and M-J conjecture between c and z planes from z←z-w+c(w=a+bi)[J]. Computers & Graphics, 1998,22(4):537-546.
  • 6Yan D J, Liu X D, Zhu W Y. A study of Mandelbrot and Julia sets generated from a general complex cubic iteration[J]. Fractals, 1999,7(4):433-437.
  • 7Liu X D,Zhu W Y. Composed accelerated escape time algorithm to construct the general Mandelbrot sets[J]. Fractal, 2001,9(2):149-153.
  • 8朱志良,曹林,朱伟勇,曾文曲.M-J混沌分形图谱的标度不变性[J].东北大学学报(自然科学版),2002,23(4):307-310. 被引量:4

同被引文献23

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部