期刊文献+

智能故障诊断的粗糙决策模型 被引量:8

Intelligent Fault Diagnosis Model Based on Rough Sets and Decision Tree Theory
下载PDF
导出
摘要 为了提高故障诊断的精度和降低误报率,提出了粗糙决策智能故障诊断模型·该模型可以对决策表进行无教师的规则提取;通过自学习,用较少的样本即可对故障进行分类·将复杂系统的原始样本集转化成了决策表,利用粗糙集具有较强的处理不确定和不完备信息的能力,对原始样本集的条件属性进行了约简处理;同时,利用决策树具有快速学习及分类的优势对约简后的决策表进行规则提取,提高了故障诊断的鲁棒性·给出了基于该模型的故障诊断步骤·以实例介绍了利用该模型进行故障诊断的全过程· Rough sets and decision tree theory are introduced in complicated intelligent fault diagnosis system(CIFDS). A rough-decision fault diagnosis model is thus developed to ensure diagnosis precision and speed up the implementation of CIFDS. The model can extract rules directly from reduced decision table. Rough sets theory as a new mathematical tool is used to deal with inexact and uncertain knowledge for pattern recognition. The target is mainly to remove redundant information and seek for reduced decision tables. As a quickly learning theory and classification tool, decision tree is used to extract rules directly from reduced decision table so as to acquire satisfactory result. An example is given to show how to apply the intelligent fault diagnosis to RH-KTB vacuum metallurgical system. The effectiveness of the algorithm is therefore proved through the exemplification.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第1期80-83,共4页 Journal of Northeastern University(Natural Science)
基金 教育部博士启动基金资助项目(2000014520)
关键词 粗糙集 约简 决策树 规则 故障诊断 rough sets reduction decision tree rule fault diagnosis
  • 相关文献

参考文献11

  • 1Li X S, Tay F E H, Qu L S. Fault diagnosis using rough sets theory[J]. Computers in Industry, 2000,43(3):61-72.
  • 2陶志,许宝栋,汪定伟.基于决策属性支持度的知识约简方法[J].东北大学学报(自然科学版),2002,23(11):1025-1028. 被引量:14
  • 3Pawlak Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982,11(5):341-356.
  • 4Jelonek J. Rough sets reduction of attributes and their domains for neural networks[J]. Computional Intelligence, 1995,11(2):339-347.
  • 5黎明,张化光.基于粗糙集的神经网络建模方法研究[J].自动化学报,2002,28(1):27-33. 被引量:35
  • 6Pawlak Z. Rough set approach to knowledge-based decision support[J]. European Journal of Operational Research, 1997,99(6):48-57.
  • 7Chien C C. A rough set approach to attribute generalization in data mining[J]. Journal of Information Sciences, 1998,107(4):169-176.
  • 8Kryszkiewicz M. Rough set approach to incomplete information systems[J]. Information Sciences, 1998,112(2):39-49.
  • 9郝丽娜,王伟,吴光宇,王宛山.粗糙集-神经网络故障诊断方法研究[J].东北大学学报(自然科学版),2003,24(3):252-255. 被引量:23
  • 10Quinlan J R. Induction of decision trees[J]. Machine Learning, 1986,1(1):81-106.

二级参考文献12

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2Forcellese A, Gabriealli F, Ruffini R. Effect of the training set size on springback control by neural network in an air bending process[J]. Journal of Material Processing Technology, 1998,80-81(4):493-500.
  • 3Pawlak Z . Rough sets[J]. Communications of ACM, 1995,38(11):89-95.
  • 4Pawlak Z. Rough sets theory and its application to data analysis[J]. Cybernetics and Systems, 1998,29(9):661-668.
  • 5Chan C C. A rough set approach to attribute generalization in data mining[J]. Journal of Information Science, 1998,107(2):169-176.
  • 6Slowinski R .Rough set reasoning about uncertain data[J]. Fundamenta Informaticae, 1996,27(2,3):229-243.
  • 7Ryszard N. Evaluation of vibroacoustic diagnostic symptoms by means of the rough sets theory[J]. Computers in Industry, 1992,20(2):141-152.
  • 8SAS Institute Inc. SAS system for mixed models[M]. North Carolina: SAS Institute Inc, 1996.
  • 9师汉民,陈吉红,阎兴,王平江.人工神经网络及其在机械工程领域中的应用[J].中国机械工程,1997,8(2):5-10. 被引量:51
  • 10韩祯祥,张琦,文福拴.粗糙集理论及其应用综述[J].控制理论与应用,1999,16(2):153-157. 被引量:156

共引文献66

同被引文献52

引证文献8

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部