期刊文献+

离散的非线性爆炸方程的密度守恒解 被引量:2

Density-Conserving Solutions to the Discrete Nonlinear Breakage Equations
下载PDF
导出
摘要 离散的非线性爆炸方程是刻划粒子增长动力学的数学模型 ,这一模型反映了一类粒子反应系统中各种粒子密度随时间变化的规律 ,它是由可数无限多个彼此相互关联的非线性常微分方程所组成的自治系统 . The discrete nonlinear breakage equations are the mathematical model of cluster growth describing the evolution of a system of clusters undergoing binary collisions resulting either in coalescence or breakup.Each of these two events may happen with an a priori prescribed probability depending for instance on the sizes of the colliding clusters.The model consists of a countable number of non locally coupled ordinary differential equations,modeling the concentration of the various clusters.The results about density conservation have been obtained in the present paper.
作者 郑列
出处 《应用数学》 CSCD 北大核心 2005年第1期104-111,共8页 Mathematica Applicata
基金 中国国家留学基金管理委员会 波兰国家自然科学基金 (PolishKBNGrant 2P0 3A0 0 71 7)资助
关键词 i-粒子 非线性爆炸 密度守恒 BANACH空间 iclusters Nonlinear breakage Density conservation Banach spaces
  • 相关文献

参考文献8

  • 1Lachowicz W,Laurencot P H,Wrzosek D. On the Oort-Hulst-Safronow coagulation equation and its relation to the Smoluchowski equation[J]. Siam J. Math. Anal. , 2003,34 (6) : 1399 ~ 1421.
  • 2Walker C. Coalescence and breakage processes[J]. Math. Meth. Appl. Sci. ,2002,25:729-748.
  • 3Banasiak J. On a non-uniqueness in fragmentation model[J]. Math. Meth. Appl. Sci. , 2002,25:541 - 556.
  • 4Laurencot PH, Wrzosek D. The discrete coagulation equations with collisional breakage[J]. Statist.Phys. ,2001,104 : 193-220.
  • 5Aldous D J. Deterministic and stochastic models for coalescence (aggregation, coagulation):A review of the meanqield theory for prohahilists[J]. Bernoulli, 1999,5 : 3-8.
  • 6Laurencot PH, Mischler S. The continuous coagulation-fragmentation equations with diffusion[J]. Arch.Rational Mech. Anal. , 2002,162 : 45 - 99.
  • 7Wrzosek D. Mass-conserving solutions to the discrete coagulation-fragmentation model with diffusion[J].Nonlinear Analysis, 2002,49:297 - 314.
  • 8Ball J M,Carr J. The discrete coagulation-fragmentation equations:existence,uniqueness,and density conservation[J]. J. Statist. Phys. ,1990,61:203-234.

同被引文献13

  • 1郑列.带有弹性碰撞的离散的凝结方程(英文)[J].数学理论与应用,2004,24(3):97-101. 被引量:1
  • 2郑列.一类粒子反应系统数学模型解的研究[J].应用数学与计算数学学报,2004,18(2):24-36. 被引量:2
  • 3郑列.Srivastava模型解的研究[J].湖北工学院学报,2004,19(6):12-16. 被引量:1
  • 4[1]Wrzosek D.Mass-conserving Solutions to the Discrete Coagulation-fragmentation Model with Diffusion[J].Nonlinear Analysis,2002,49:297-314.
  • 5[2]Kowalczyk R,Gamba A,Preziosi L.On the Stability of Homogeneous Solutions to Some Aggregation Models[J].Discrete Contin Systems,Ser B,2004(4):203-220.
  • 6[3]Walker C.Coalescence and Breakage Processes[J].Math Meth Appl Sci,2002,25:729-748.
  • 7[7]Laurencot Ph,Wrzosek D.The Discrete Coagulation Equations with Collisional Breakage[J].Statist Phy,2001,104:193-220.
  • 8[8]Legvraz F,Tschudi H R.Singularities in the Kinetics of Coagulation Processes[J].J Phy,A,1981,14:3389-3 405.
  • 9[9]White W H.A Global Existence Theorem for Smoluchowski's Coagulation Equations[J].Proc Amer Math Soc,1980,80:273-276.
  • 10[10]Ball J M,Carr J.The Discrete Coagulation-fragmentation Equation:Existence,Uniqueness,and Density Conservation[J].J Statist Phy,1990,61:203-234.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部