期刊文献+

磁流体方程的时间解析半径(英文)

Time Analyticity Radius for Solution of Magnetohydrodynamics Equations
下载PDF
导出
摘要 本文考查了二维周期边界条件下的磁流体方程 ,证明了当初值位于全局吸引子上和定常解足够接近时 。 The two dimensional magnetohydrodynamics equations with periodic boundary condition are consider in this note.If the initial data lies on the global attractor and is closed enough to a stationary solution then the radius of solution at t=0 can be arbitrarily large.
出处 《应用数学》 CSCD 北大核心 2005年第1期161-166,共6页 Mathematica Applicata
基金 SupportedbyNSFCinChina( 40 375 0 1 0 1 0 4 71 1 1 0 5 0 1 360 30 5 0 30 60 1 9)
关键词 磁流体方程 定常解 解析 Magnetohydrodynamics equations Stationary solution Analyticity
  • 相关文献

参考文献7

  • 1Constantin P,Foias C. Navier-Stokes equations[M]. Chicago: University of Chicago Press, 1988.
  • 2Temam R. Narier-Stokes equations. Theory and numerical analysis[M]. Amsterdam: Springer-Verlag.1984.
  • 3Sermange M.Temam R. Some mathematical questions related to the MHD equations[J]. Comn. On Pureand Aool. Math. , 1983 .XXXVl:635 -664.
  • 4Igor Kukavica.On the time analyticity radius of the solutions of the 2 dimensional Navier-Stokes equations[J]. J. Dynam. Diff. Equ. ,1993,6:503-568.
  • 5Foias C. Teman R. Some analytic and geometric properties of the solutions of the evolution Navier-Stockes equations[J]. J. Math. pures et Appl.1979.58:339--368.
  • 6Foias C,Temam R. Gevrey class regularity for the solutions of the the Navier-Stokes equations[J].J.Func. Anal. ,1989.87(2):359-369.
  • 7Sangjeong Kim. Gevrey class regularity of the magnemhydrodynamics equations[J]. ANZIAM J. 2002,43:397-408.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部