期刊文献+

细胞外pH值对KCNQ2/3钾离子通道的调节

Modulation of KCNQ2 and KCNQ3 potassium channels by extracellular pH
下载PDF
导出
摘要 目的 研究细胞外pH值改变对KCNQ2 /3钾离子通道的调节。方法 用体外转录法将KCNQ2 /3钾离子通道的mRNA,微注射于爪蟾卵母细胞中,表达KCNQ2 /3电流。用双电极电压钳方法 (TEVC)观察细胞外pH值对KCNQ2 /3通道的调节。结果 细胞外pH减小,抑制KCNQ2 /3电流,影响激活电压,而且这种调节有一定的电压和浓度依赖性。在阈电压附近 -60mV、pH 6 8时对KCNQ2 /3通道的影响最明显。pH值改变还会调节通道开放时程,影响通道激活时间常数。结论 在维持神经细胞静息电位、调节神经兴奋性方面起重要作用的KCNQ2 /3通道,受细胞外pH值调节,这种调节作用可能在神经细胞生理性兴奋和病理性变化中如:惊厥、癫痫、休克有重要意义。 Aim To study the modulation of KCNQ2/3 potassium cha nn els by extracellular pH.Methods In vitro transcription was used to synthesize cRNA of KCNQ2/3 potassium channels.The cRNA was injected into Xenopus oocytes to express the KCNQ2/3 channel.The modulation of KCNQ2/3 potass ium channels by extracellular pH was studied by two electrodes voltage clamp tec hniques.Results KCNQ2/3 currents were inhibited and current-vo ltage relationship of activation were shifted to the right with decreased extrac ellular pH. pH modulation of KCNQ2/3 currents was voltage dependent,with a more pronounced effect at more negative potentials above the activation threshold (-60 mV). Extracelluar pH also decreased activation and deactivation kinetics of KCNQ2/3 currents.Conclusion KCNQ2/3 channels, known to contr ibute to neuronal excitability, were modulated by extracelluar pH. The profound effects of the extracelluar pH exerted on KCNQ2/3 channel may play an important role during physiology neuronal activity and pathological events such a s epileptic seizures, cerebral ischemia and shock etc.
出处 《中国药理学通报》 CAS CSCD 北大核心 2005年第1期82-87,共6页 Chinese Pharmacological Bulletin
基金 河北省自然科学基金资助课题 (No303464 ) 国家自然科学基金资助课题(No30270361)
关键词 电压依赖性的KCNQ2/3钾离子通道 细胞外pH值 voltage-dependence KCNQ2/3 potassium channel extrace llular pH
  • 相关文献

参考文献15

  • 1杜肖娜,王川,贾庆忠,张海林.细胞内pH对胆碱能受体介导的Kir3.1/3.4电流的调节[J].中国药理学通报,2004,20(1):53-58. 被引量:2
  • 2Robbins J. KCNQ potassium channels: physiology, pathophysiology, and pharmacology[ J]. Pharmacology and Therapeutics,2001,90(1) :1 -19.
  • 3Wang HS, Pan Z, Shi W, Brown BS. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of M-channel [ J ]. Science, 1998,283 (5395) : 1890 - 3.
  • 4Marrion NV. Control of M-current [ J ]. Annu Rev Physiol, 1997,59:483 - 504.
  • 5Zhang H, Craciun LC, Mirshahi T et al. PIP2 activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents[J]. Neuron, 2003,37(6) :963 -75.
  • 6Barry SB ,Yu SP. Modulation and genetic identification of the M-channel [ J ]. Progress in Biophysics and Molecular Biology,2000,73(2 -4 ) : 135 - 166.
  • 7Cooper EC, Jan LY. M-channels: Neurological diseases, neuromodulation, and drug development [ J ]. Arch Neurol, 2003,60(4) :496 - 500.
  • 8Main M J, Cryan JE, Dupere JR et al. Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine[ J ]. Mol Pharmacol, 2000,58 (2) :253 - 62.
  • 9Prole DL, Marrion NV. Ionic permeation and conduction properties of neuronal KCNQ2/KCNQ3 potassium channels[ J]. Biophysical Journal,2004,86(3 ) : 1454 -69.
  • 10Wood, M J, Stephen JK. Two mechanisms of K + -dependent potentiation in Kv 2. 1 potassium channels [ J ]. Biophysical Journal,2000,79:2535 - 46.

二级参考文献15

  • 1[1]Chuang H, Jan YN, Jan LY. Regulation of IRK3 inward rectifier K+ channel by m1 acetylcholine receptor and intracellular magnesium. Cell, 1997;89(7):1121~32
  • 2[2]Light PE, Bladen C, Winkfein RJ et al. Molecular basis of protein kinase C-induced activation of ATP-sensitive potassium channels. Proc Natl Acad Sci USA, 2000;970(16):9508~63
  • 3[3]Schulte U, Konrad M, Jeck N et al. pH gating of ROMK (Kir1.1) channels: Control by an Arg-Lys-Arg triad disrupted in antenatal Bartter syndrome. Proc Natl Acad Sci USA, 1999;96(26):15298~303
  • 4[4]Qu Z, Yang Z, Cui N et al. Gating of inward rectifer K+ channels by proton-mediated interactions of N-and C-terminal domains. J Biol Chem, 2000;275(41):31573~80
  • 5[5]Mao J, Wu J, Chen F et al. Inhibition of G-protein-coupled inward rectifying K+ channels by intracelluar acidosis. J Biol Chem, 2003;278(9):7091~8
  • 6[6]Rohacs T, Lopes C, Mirshahi T et al. Assaying phosphatidylinositol bisphosphate regulation of potassium channels. Methods Enzymol, 2002;345:71~92
  • 7[7]Huang CL, Feng SY, Hilgemann DW. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature, 1998;391:803~6
  • 8[8]Peleg S, Varon D, Ivanina T et al. Gαi controls the gating of the G protein-activated K+ Channel, GIRK. Neuron, 2002;33(3):87~99
  • 9[9]Collins A, Larson M. Differential sensitivity of inward rectifier K+ channels to metabolic inhibitors. J Biol Chem, 2002;277:35815~8
  • 10[10]Carmeliet E. Cardiac ionic currents and acute ischemia: From channels to ischemias. Physiol Res, 1999;79:917~1017

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部