期刊文献+

汽油发动机的高温冷却 被引量:3

H.T.C.Concept Applied in Gasoline Engines
下载PDF
导出
摘要 本文从理论角度分析了高温冷却能促进和优化汽油机燃烧过程的机理,通过对一台汽油发动机进行高温冷却试验后,在降低油耗、改善排放等方面得到了一些收获,即在低转速部分工况下可得最佳节油率7.94%;排气中CO及HC含量可望降低20%。作者用燃烧分析仪对全部测试数据进行处理和分析,结果发现采用高温冷却后在急燃阶段中的气缸压力升高比和放热速率都有上升趋势,热效率的计算结果表明,高温冷却对改进润滑状态、降低气缸摩擦功消耗和提高机械效率方面起到重要作用,是获得较高的节油率指标的关键因素。 To achieve the economy potential of fuel and possible reduction in emission towards the high temperature cooling concept (H. T. C.) applied in gasoline engines, a series of experiments were accomplished. Engine test results showed the following benefits of the H. T. C. method: 6% of consumption could be reduced at partial load 3%-4% at full load. The carbon monoxide and Hydro-carbons emission level could be lowered by 15%-20% than that in the baseline cooled engine. Data acquired from a combustion analyser, indicated a shorting in the main-combustion process duration and therefore there was a corresponding rise both in pressure rise rate and heat-release rate. However, an increase apparent in mechanical efficiency suggested that engine losses due to wall friction which constituted the greater part of the total losses had been dropped a lot under a sufficient H. T. C. condition, e. g. 110℃, and thus that seems to be a dominantly influencing factor for obtaining fuel-economy.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 1993年第3期17-24,共8页 Journal of Shanghai Jiaotong University
关键词 高温冷却 燃烧 油耗 汽油发动机 high temperature cooling combustion fuel consumption emission
  • 相关文献

参考文献2

  • 1章慧锦,车辆冷却系统设计手册,1984年
  • 2团体著者,内燃机原理,1981年

同被引文献24

  • 1杨培毅,程林.汽车余热空调的研究现状[J].流体工程,1993,21(6):54-59. 被引量:21
  • 2蔡锐彬,卢振雄,罗晓波.小型柴油机高温冷却效果的研究[J].华南理工大学学报(自然科学版),1995,23(5):142-148. 被引量:2
  • 3武俊梅,张祉祐,张秉笃.小型无泵溴化锂吸收式空调器蒸发器的研究[J].暖通空调,1995,25(1):8-11. 被引量:8
  • 4彭小飞,俞小莉,夏立峰,钟勋.纳米流体悬浮稳定性影响因素[J].浙江大学学报(工学版),2007,41(4):577-580. 被引量:35
  • 5高田秋一.吸收式制冷机[M].北京:机械工业出版社,1987..
  • 6Keblinski P, Eastman J A, Cahill D G. Nanofluids for thermal transport. Materials Today, 2005, 8(6):36-44
  • 7Xuan Yimin, Li Qiang. Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 2000, 21(1):58-64
  • 8Choi S U S. Enhancing thermal conductivity of fluids with nanoparticles//Siginer D A, Wang H P. Developments and Application of Non-Newtonian Flows. ASME FED-231.New York: ASME, 1995:99 -105
  • 9Lee S, Choi S U S, Eastman J A. Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 1999, 121:280- 299
  • 10Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q. Thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. Applied Physics, 2002, 9(4): 4568-4572

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部