期刊文献+

医学图像轮廓跟踪的广义模糊粒子滤波方法 被引量:6

Active Contours Tracking of Medical Images Based on the Generalized Fuzzy Particle Filter
下载PDF
导出
摘要 在医学图像运动跟踪领域 ,轮廓线跟踪是描绘边缘运动的有力手段 .为避免观测噪声的影响 ,增加轮廓的时空局部约束并利用粒子滤波 (PF)技术解决该类跟踪问题是非常有效的 .为更好地优化计算PF的重要比率 (IR)以提高粒子滤波器的性能 ,该文提出了广义模糊粒子滤波 (GFPF)方法 ,通过与当前较好的无迹粒子滤波 (UPF)相比较 ,GFPF显示了很好的效果 ;另外 ,在似然估计方面 ,GFPF提供了独特的似然轮廓估计算法 .理论和试验证明 ,GFPF不仅能够很好地解决动态轮廓跟踪问题 ,还为当前各种PF算法的IR计算提供了全新的解决途径 . In the field of medical image visual tracking, Contour-based tracking methods have been proved to be a powerful tool for boundary delineation. During contour evolution, the particle filter (PF) is used to track the feature points by enforcing spatio-temporal local constraints to handle the observation noise. To improved the capability of PF and optimize its importance ratios (IR), the generalized fuzzy particle filter (GFPF) is presented in this paper. By comparing with the UPF which is a good method in object tracking, the GFPF shows great advantage. Another, with regard to likelihood estimation (LE), a special model of LE is constituted for contour estimation. By theoretic evaluation and sufficient contrast experiments, it is clear that the GFPF is a better measure for contours tracking and provide a novel resource for computing the IR of PF.
出处 《计算机学报》 EI CSCD 北大核心 2005年第1期88-96,共9页 Chinese Journal of Computers
基金 国家"九七三"重点基础研究发展规划项目基金 (2 0 0 3CB71610 4) 国家青年科学基金 (60 3 0 2 0 2 2 )资助 .
关键词 无迹粒子滤波 广义模糊粒子滤波 试探分布 重要比率 似然估计 Algorithms Fuzzy sets Maximum likelihood estimation Monte Carlo methods Tracking (position)
  • 相关文献

参考文献14

  • 1van Merwe Rudolph,Doucet Arnaud.The unscented particle filter.Department of Engineering,Cambridge University:Technical Report CUED/F-INFENG/TR 380,2000.
  • 2Arulampalam Sanjeev,Maskell Simon,Gordon Neil,Clapp Tim.A tutorial on particle fitlers for on-line non-linear/non-Gaussian Bayesian tracking.IEEE Transactions on Signal Processing.2002,50(2):174-188.
  • 3Orton Matthew,Fitzgerald Willian.A bayesian approach totracking multiple targets using sensor arrays and particle fitlers.Department of Engineering.Cambridge University:echnical Report CUED/F-INFENG/TR 401.2001.
  • 4Yong Rui.Chen Yun-Qiang.Better proposal distributions:Object tracking using unscented particle filter.In:Proceedings of the IEEE CVPR,Hawaii,2001,2:786-793.
  • 5Merwe R.,Doucet A.,Freitas N.'Wan E..The unscented particle filter.Department of Engineering,Cambridge University:echnical Report CUED/F-INFENG/TR 380,2000.
  • 6Tanizaki H..Nonlinear and non-gaussian state-space modeling with Monte-Carlo simulations.Journal of Econometrics.1998.83(1-2):263-290.
  • 7Liu J.S.,Chen R..Sequential Monte Carlo methods for dy-namical systems.Journal of the American Statistical Associa-tion,1988,93:1032-1044.
  • 8Doucet A.,Gordon N.J..Simulation-based optical filter for manoeuvring target tracking.In;SPIE Signal and Data Pro-cessing of Small Targets,SPIE 3809,1999.
  • 9Leung Chung-Chu,Chen Wu-Fan.Brain tumor boundary detection in MR image with generalized fuzzy operator.In:Proceedings of IEEE ICIP Conference,Barcelona,Spain,2003,14-17.
  • 10Wu Ying.Yu Ting,Hua Gang.Tracking appearances with occlusions.In:Proceedings of IEEE Conference on CVPR'03.Madison,Wisconsin,2003,789-795.

同被引文献46

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部