期刊文献+

基于三维多分辨率模型与Fisher线性判别的人脸识别方法 被引量:4

Face Recognition Based on a 3D Multi-Resolution Model and FLDA
下载PDF
导出
摘要 提出了一种不同姿态和光照条件下的人脸识别方法 ,将三维多分辨率模型与Fisher线性判别结合起来 .为了排除光照、姿态对人脸识别的影响 ,利用重采样技术构造了三维多分辨率模型 ,更快、更精确地提取人脸特征 ;同时结合Fisher线性判别 ,充分利用不同条件下的二维人脸图像信息 ,更有效地排除光照、姿态的影响 .实验表明 ,三维多分辨率模型与Fisher线性判别相结合能够很好地适应外部条件的变化 ,提高了人脸识别的速度和效率 . A new method of face recognition across different poses and illuminations is proposed in this paper, which combines a 3D multi-resolution model and Fisher's Linear Discriminant Analysis (FLDA) together. Analysis of poses and illuminations is a very difficult work, in order to get rid of extrinsic effects, the method is based on a 3D multi-resolution face model that is formed on the basis of gridded-resampling and can encode shape and texture in terms of model parameters fleetly, and an algorithm that recovers these parameters from a single image of a face is proposed. Fisher's Linear Discriminant Analysis is applied to make full use of images acquired from various conditions. It can make recognition independent of imaging conditions more efficiently. The results show that combination of the multi-resolution model and FLDA can adapt to variety of poses and illuminations, and get a considerable effect.
出处 《计算机学报》 EI CSCD 北大核心 2005年第1期97-104,共8页 Chinese Journal of Computers
基金 国家自然科学基金 (60 3 75 0 0 7) 北京市自然基金重点项目基金 [4 0 110 0 1(KD0 70 62 0 0 10 1) ] 北京市基金委重点项目基金[KZ2 0 0 3 10 0 0 5 0 0 2 (KP0 70 62 0 0 3 74) ] 重点实验室开放基金 (KP0 70 62 0 0 3 71)资助 .
关键词 人脸识别 三维多分辨率模型 FISHER线性判别 重采样 匹配 Discriminators Sampling Three dimensional computer graphics
  • 相关文献

参考文献20

  • 1Brunelli R.,Poggio T..Feature recognition:Features versus templates.IEEE Transactions on Pattern Analysis Machine Intelligence,1993,15(10):1042~1052.
  • 2Huang C.L.,Chen C.W..Human facial feature extraction for face interpretation and recognition.Pattern Recognition,1992,25(12):1435-1444.
  • 3Cottrell G.W.,Fleming M.. Categorization of faces using unsupervised feature extraction.In:Proceedings of International Networks Conference,Paris,1990,65-70.
  • 4Turk M.,Pentland M..Eigenfaces for recognition.The Journal of Cognitive Neuroscience,1991,3(1):71-79.
  • 5Hallinan P..A deformable model for the recognition of humanfaces under arbitrary illumination[Ph.D.dissertation].Har-vard University,Cambridge,ldassachusetts,1995.
  • 6Lanitis A.,Taylor C.,Cootes T..Automatic face identification system using flexible appearance models.Image and Vision Computing,1995,13(5):393-401.
  • 7Vetter T.,Poggio T..Linear object classes and image synthesis from a single example image.IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):733-742.
  • 8Georghiades A.,Belhumeur P.,Kriegman D..From few to many:Illumination cone models for face recognition under variable lighting and pose.IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(6):643-660.
  • 9Gross Ralph.Matthews Lain,Baker Simon.Eigen light-fields and face recognition across pose.In:Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Reeognition(FGR'02),Washington D C,2002.
  • 10Lee Mun Wai,Ranganath Surendra.3D deformable face model for pose determination and face synthesis.In:Proceedings of the 10th International Conference on Image Analysis and Processing,Venice,Italy,1999.

同被引文献92

引证文献4

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部