期刊文献+

基于数据挖掘的移动大客户管理系统 被引量:2

The Big Client Management System of Cellular Phones Based on Data Mining
下载PDF
导出
摘要 数据挖掘是依据相应的规则和策略,从海量的实际应用数据中提取有用信息和知识的一种技术。通过对移动通信业中所存在的问题和数据挖掘技术进行分析,针对通信业中突出的增量不增收问题,提出基于数据挖掘的移动大客户管理系统,以期通过加强对大客户的管理,为企业提供决策依据,从而提高移动通讯业客户管理的科学性,增强企业市场竞争力。该系统根据对大客户的特征描述,定义了相关的功能;并针对不同的数据挖掘模型,给出了相应的可验证实例。实验结果表明基于数据挖掘的移动大客户管理系统能够为企业提供有用的分析数据,有利于企业的决策。 Data mining is a technique that abstracts the helpful information and knowledge from the mass application dataset by relevant rules and policies.This paper analyses the existing problems in telecommunications and data mining technology,and proposes a big client management system of cellular phones based on data mining to aim at solving the current problem of no profits increasing while there is a substantial increase of clients.This system hopes to enhance management of big clients,to give some advice on decision-making for corporations,to make client management more scientific,and to lift the capability of market competition.This system defines some main functions of big clients,and provides some instances aiming at different data mining models.The result shows that this system can provide the helpful data for corporations to make decisions.
作者 张润莲
出处 《桂林电子工业学院学报》 2004年第6期30-32,共3页 Journal of Guilin Institute of Electronic Technology
关键词 数据挖掘 移动大客户管理系统 联机分析处理 data mining,the big client management system of cellular phones,OLAP
  • 相关文献

参考文献3

  • 1Michael J A Berry,Gordon S Linoff.Mastering data mining[M].John Wiley&Sons,2000,72-116.
  • 2Daskalaki S, Kopanas I,Gourdara M et al.Data mining for decision support on customer insolvency in telecommunications business[J].European journal of Operation Research,2003,(145):239-255.
  • 3Clemnet Paul C and Northrop Linda M.Software architecture:An executive overview[J].Technical Report CMU/SEI-96-TR-003,ESC-TR-976-003,February 1996.

同被引文献15

  • 1梁娟娟,王喜成.利用数据挖掘加强客户关系管理[J].桂林电子工业学院学报,2004,24(6):67-70. 被引量:2
  • 2王伟平,李建中,张冬冬,郭龙江.一种有效的挖掘数据流近似频繁项算法[J].软件学报,2007,18(4):884-892. 被引量:33
  • 3GREG L, BRENT S, JEREMY Y. Amazon. Com Recommendationsz item-to-item collaborative filtering[J]. IEEE Internet Computing, 2003,7 (1) : 76-80.
  • 4KARYPIS G. Evaluation of item-based top-N recommendation algorithms [C]//Proceedings of CIKM 2001, Atlanta, ACM Press, 2001 : 247-254.
  • 5ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749.
  • 6SCHAFER J, KONSTAN J, RIEDL J. Recommender systems in ecommerce[C]//Proceedings of ACM E-Commerce, ACM- Press,1999:158-166.
  • 7HERLOCKER J, KONSTAN J, BORCHERS A, et al. An al- gorithmic framework for performing collaborative filtering[C]// Proceedings of the 1999 Conference on Research and Development in Information Retrieval, Berkeley, CA, 1999.
  • 8Movielens[EB/OL]. http://movielens, umn. edu/Iogin.
  • 9GIANNELLA C, HAN J, PEI J,YAN X, YU P S. Mining frequent patterns indata streams at multiple time granularities [J]. Next Generation Data Mining, 2003:191-212.
  • 10MANKU G S, MOTWANI R. Approximate frequency counts over data streams[C]// Proceedings of VLDB[c3. San Mateo:Morgan Kauffman Publishers Inc, 2002: 346-357.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部