期刊文献+

立方体Q_3的s-正则二面体覆盖

On the S-Regular Dihedral Covering of the Three-Dimensional Hypercube Q
下载PDF
导出
摘要 一个图称为s-正则的,如果它的自同构群作用在它的s-弧集上是正则的.Feng和Kwak等[6,7]分类了立方体Q3上保纤维自同构群弧传递的连通s-正则循环覆盖.本文证明了不存在立方体Q3上保纤维自同构群弧传递的连通s-正则二面体覆盖. A graph is s-regular if its automorpism group acts regularly on the set of its s-arcs. This paper studies the s-regular dihedral covering of the three-dimensional hypercube Q, and proves that s-regular dihedral covering of the Q is not exist.
作者 刘志强
出处 《廊坊师范学院学报》 2004年第4期24-26,共3页 Journal of Langfang Teachers College
基金 国家自然科学基金资助项目(10071002)
关键词 S-正则图 s-弧-传递图 正则覆盖 s-regular graphs s-arc-transitive graphs regular covering
  • 相关文献

参考文献8

  • 1[1]W.T.Tutte,A family of cubical graphs[J].Proc.Camb.Phil.Soc.43(1947),459-474.
  • 2[2]W.T.Tutte,On the symmetry of cubic graphs[J],Canad.J.Math.11(1959),621-624.
  • 3[3]T.L.Gross,T.L.Tucker,T.W.,Generating all graph coverings by permutation voltage assignment[J].Discrete Math.,18(1977),273-283.
  • 4[4]A.Malnic,Group actons,coverings and lifts of automorphisms[J].Discrete Math.,182(1998),203-218.
  • 5[5]S.Hong,J.H.Kwak,J.Lee,Regular graph covering transformation groups have the isomorphism extension proerty[J].Discrete Math,168(1996),85-105.
  • 6[6]Y.Q.Feng,J.Kwak,Constructing an iffinite family of cubic 1-regular graph[J].European J.Combin.23(2002),559-565.
  • 7[7]Y.Q.Feng,K.S.Wang,s-Regular cyclic coverings of the three-dimensional hypercube Q3[J].European J.Combin 35(2004),669-671.
  • 8[8]Y.Q.Feng,J.H.Kwak,s-Regular cyclic coverings of the complete bipartite graph K3,3[J].J.Graph Theory.45(2004),101-112.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部