期刊文献+

溶胶玻璃原位合成碳纳米管的研究

In Situ Synthesis of Carbon Nanotubes in Gel Glass
下载PDF
导出
摘要 目前,碳纳米管的各种制备方法如电弧法、激光消融法、催化热解法及化学气相沉积法等,都是在500~ 3500℃温度范围内经由气固相接触表面合成的,从而使反应的深度和广度都受到了限制.利用固相热解法尝试在 溶胶玻璃中原位合成碳纳米管,该方法可以使反应在整个固相范围内同时发生,而不只是在气固相的表面合成.在 制备样品的过程中采用了溶胶 凝胶法,成功地将碳源(乙酰丙酮)和催化剂(硝酸钴)均匀地分散在SiO2溶胶玻璃 中,制备了纳米级的复合材料.另外,选择了乙酰丙酮作碳源,将碳纳米管的合成温度降到了400℃,实现了在低温 固相条件下原位合成碳纳米管.最后通过TEM对生成的纳米碳管进行表征. At present, the synthesis of c ar bon nanotubes (CNTs) is normally conducted on a vapor-to-solid interface at 50 0—3 500 ℃ via various vapor phase methods, such as arc discharge, laser ablation, catalytic pyrolysis, and chemical vapor deposition. T he extent and profundity of reaction is limited. In this paper,we try to synthesize carbon nanotubes by solid-state synthesis in a gel matrix.The reaction can take place simultaneo usly across an entire bulk phase rather than only on intersurface between liquid state.Carbo n nanotubes have been synthesized in a gel matrix prepared by the sol-gel method. Acetylacetone (C 5H 8O 2) was used as a solid-state carbon source and activa tor (Co(NO 3) 2) was preintroduced into a gel matrix. In addition, acetylacetone was chosen to be solid-state carbon source. As a result the synthetical temperature was reduced to 400 ℃, synthesis of carbon nanotubes at low temperature come ture.At last, carbon nanot ubes are described by TEM .
作者 郑举功
出处 《纳米技术与精密工程》 CAS CSCD 2004年第4期261-265,共5页 Nanotechnology and Precision Engineering
关键词 固相 电弧法 溶胶 碳纳米管 原位合成 化学气相沉积法 乙酰丙酮 激光消融 纳米碳管 复合材料 carbon nanotubes (CNTs) solid s tate iron nanotubes sol low temperature in-situ synthesis
  • 相关文献

参考文献18

  • 1[1]Lijima S, Helical. Microtubules of graphiticcarbon [ J ]. Nature, 1991, 345(6348) :56-58.
  • 2[2]Jones J M, Malcolm R P, Thomas K M, et al. The anode deposit formed during the carbon arc evaporation of graphite for the synthesis of fullerenes and carbon nanotubes [ J ].Carbon, 1996, 34 ( 2 ): 231-237.
  • 3[3]Colbert P T, Zhang J M, Clure S M , et al. Growth and sintering of fullerene nanotubes [ J ]. Science, 1994, 266:1 218-1 233.
  • 4[4]Yagaman M J, Yoshida M M, Rendon L. Catalystic growth of Carbon microtubules with fulleren structure [ J ]. Appl phys Lett, 1993, 62:202-206.
  • 5[5]Dai H, Wong W, Lu Y , et al. Synthesis and characterization of carbide nanords[J]. Nature, 1995, 375:769-711.
  • 6[6]Endo M,Takeuchik, Kroto H, et al. The production and structure of pyrolytic carbon nanotubes (PCNT) [ J ]. Phys Chemsolid,1993, 54:1 841-1 846.
  • 7[7]Edo M ,Takeuchi K, Kroto H, et al. Pyrolytic carbon nanotubes from Vapor grown carbon fibers [J]. Carbon, 1995,33 (7) :873-880.
  • 8[8]Guo T, Niokolaev P ,Thess A, et al. Catalytic growth of single walled nanotubes by laser vaporization [ J ]. Chem Phys Lett, 1995, 243:49-56.
  • 9[9]Guo T, Rinzler A G. Sel-assembly of tubular fullerene [ J ].J Phys Chem, 1995, 99(27) :10 694-10 699.
  • 10[10]Thess A , Lee R K, Smally R E, et al. Crystalline ropes of metallic carbon nanotubes [ J ]. Science, 1996, 273 (5274):483-487.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部