期刊文献+

互连线延迟的瑞利度量 被引量:3

An Interconnect Delay Metric Based on the Rayleigh Distribution
下载PDF
导出
摘要 从统计概率的角度出发 ,提出一种采用瑞利分布的延迟度量———互连线延迟的瑞利度量 (RLD) 该算法仅需要采用前两个瞬态 ,计算简单 ,而且准确性较好 。 From the point of view of statistical probability, this paper presents a novel and simple delay metric based on the Rayleigh distribution, called RLD (Rayleigh-based Delay). By this metric, only the first two moments are needed to estimate the interconnect delay. The results from RLD and the SPICE simulation results are almost the same, especially for the far-end nodes.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2005年第1期119-121,共3页 Journal of Computer-Aided Design & Computer Graphics
基金 北京市京经函 [2 0 0 2 ] 5 91号
关键词 概率密度函数 统计密度函数 瞬态 瑞利分布 probability density function cumulative density function moment Rayleigh distribution
  • 相关文献

参考文献8

  • 1Devgan Anirudh, O'Brien Peter R. Realizable reduction for RC interconnect circuits[A]. In: Proceedings of the 1999 IEEE/ACM International Conference on Computer-Aided Design, San Jose, California, 1999. 204~207.?A?A
  • 2Sapatnekar S S. RC interconnect optimization under the Elmore delay model[A]. In: Proceedings of the 1994 IEEE/ACM International Conference on Computer-Aided Design, San Jose, California, 1994. 387~391.
  • 3Alpert Charles J, Devgan Anirudh, Kashyap Chandramouli V. A two moment RC delay metrics for performance optimization[A]. In: Proceedings of the 2000 International Symposium on Physical Design, San Diego, California, 2000. 69~74.
  • 4Kay R, Pileggi L. PRIMO: Probability interpretation of moments for delay calculation[A]. In: Proceedings of the 35th ACM/IEEE Design Automation Conference, San Francisco, California, 1998. 463~468.
  • 5Lin T, Acar E, Pileggi L. H-gamma: An RC delay metric based on a gamma distribution approximation to the homogeneous response[A]. In: Proceedings of ACM/IEEE International Conference on Computer-Aided Design, Doublettree Hotel, San Jose, California, 1998. 19~25.
  • 6Liu Frank, Kashyap Chandramouli, Alpert Charles J. A delay metric for RC circuits based on the Weibull distribution[A]. In: Proceedings of the IEEE/ACM International Conference on Computer Aided Design, San Jose, California, 2002. 620~624.
  • 7Bain L J, Engelhard M. Introduction to Probability and Mathematical Statistics[M]. Belmont: Duxbury Press, 1992.
  • 8Eric W Weisstein. Wolfram Research[OL]. http://mathworld.wolfram.com.

同被引文献37

  • 1徐勇军,韩银和,李华伟,李晓维.组合电路功耗敏感性统计分析[J].计算机辅助设计与图形学学报,2005,17(1):122-128. 被引量:4
  • 2董刚,杨银堂,柴常春,李跃进.多芯片组件互连的功耗分析[J].计算机辅助设计与图形学学报,2005,17(8):1809-1812. 被引量:4
  • 3W C Elmore. The Transient Response of Damped Linear Network with Particular Regard to Wideband Amplifiers [J]. J. Applied Physics, 1948, 19: 55-63.
  • 4L T Pillage, R A Rohrer. Asymptotic Wavcform Evaluation for Timing Analysis [J]. IEEE Transactions on Computer Aided Design, 1990, 9(4): 352-366.
  • 5R Kay, L Pileggi. PRIMO: Probability Interpretation of Moments for Delay Calculation [A]. in Proc. IEEE/ACM Design Automation Conference [C]. 1998-06.463-468.
  • 6T Lin, E Acar, L Pileggi. h-gamma: An RC Delay Metric based on a Gamma Distribution Approximation to the Homogeneous Response [A]. in Proe. IEEE/ACM Int. Conf. Computer-Aided Design [C]. 1998-1 I. 19-25.
  • 7F Liu, C Kashyap, C J Alpert. A Delay Metric for RC Circuits based on the Weibull Distribution [A]. IEEE/ACM Intl. Conference on Computer-Aided Design [C]. 2002. 620-624.
  • 8CJ Alpert, A Devgan, C Kashyap. RC Delay Metrics for Performance Optimization [J]. IEEE Trans. on Computer-Aided Design, 20(5): 571-582.
  • 9Charles Jay Alpert, Anirudh Devgan, Chandramouli V Kashyap. United State Patent: 6950996 [P]. 2005-09.
  • 10Bimbaum Z W, Saunders SC. A New Family of Life Distribution [J]. Applied Probability, 1969, (6): 319-327.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部