摘要
称群G为π-闭-Sylow塔群,若群G存在正规Hallπ-子群为Sylow塔群。在π-闭-Sylow塔群的性质的基础上,刻画了π-闭-Sylow塔群的Sylow塔π-覆盖子群,并利用π-闭-Sylow塔群的Sylow塔π-覆盖子群、弱c-正规子群的性质,给出了一个π-闭-Sylow塔群为可解群、幂零群的一些条件。
A group G is called a π-closed-Sylow-tower group if there exists a normal Hall π-subgroup in G., which is a Sylow-tower group. Discussion is made on the properties π-closed-Sylow-tower-covering subgroups and conditions for solvable group and nilpotent group are determined through the use of π-close-Sylow- tower-covering subgroups and weakly c-normal subgroups.
出处
《淮阴工学院学报》
CAS
2004年第5期8-9,共2页
Journal of Huaiyin Institute of Technology
基金
淮海工学院校内科研课题(Z2003035)。