期刊文献+

有限群的π-闭-Sylow塔群的性质

Class of π-close- Sylow-tower Groups
下载PDF
导出
摘要 称群G为π-闭-Sylow塔群,若群G存在正规Hallπ-子群为Sylow塔群。在π-闭-Sylow塔群的性质的基础上,刻画了π-闭-Sylow塔群的Sylow塔π-覆盖子群,并利用π-闭-Sylow塔群的Sylow塔π-覆盖子群、弱c-正规子群的性质,给出了一个π-闭-Sylow塔群为可解群、幂零群的一些条件。 A group G is called a π-closed-Sylow-tower group if there exists a normal Hall π-subgroup in G., which is a Sylow-tower group. Discussion is made on the properties π-closed-Sylow-tower-covering subgroups and conditions for solvable group and nilpotent group are determined through the use of π-close-Sylow- tower-covering subgroups and weakly c-normal subgroups.
作者 李科生 於遒
出处 《淮阴工学院学报》 CAS 2004年第5期8-9,共2页 Journal of Huaiyin Institute of Technology
基金 淮海工学院校内科研课题(Z2003035)。
关键词 Π-闭-SYLOW塔群 Sylow塔π-群Sylow塔π-覆盖子群(Tπ-覆盖子群) 弱C-正规子群 可解群 幂零群 π-closed- Sylow-tower groups π-closed-Sylow-tower-covering subgroups weakly c-normal subgroups solvable group nilpotent group
  • 相关文献

参考文献7

  • 1[1]Guo Wenbin, The Theory of Classes of Groups[M].Science Press/Kluwer Acadenmic Publishers, Beijing-New York-Dordrecht-Boston-London,2000.
  • 2[2]M. Weinstein, Between Nilpotent and Solvable[M].Polygonal Publishing House, NJ, 1982.
  • 3[4]Schmid.P, Every Saturated Formation Is A Local Formation[J].J.Algebra, 1978,51. 144-148.
  • 4[5]Zhu Lujin, Guo Wenbin, K.P..Shum, Weakly c-normal Subgroups of Finite Groups and Its Properties[J].Communication in Algebra Vol33. No11 (2002), 67-72 .
  • 5[6]Guo Wenbin, The Influence of Minimal Subgroups on the Structure of Finite Groups[J].Southeast Asian Bulletin of Mathematics 1998, 22. 287-290.
  • 6[7]M.Xu, Introduction to Finite Group[M].Science Press, Beijing, 1999(in Chinese).
  • 7[8]Huppert, B, Blackburn, N. Finite Groups, Springer-Verlag, New York/Heidelberg/Berlin,1967.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部