期刊文献+

基于形状的时间序列相似性度量及模式发现算法 被引量:3

Shape-based Time Series Similarity Metric and Pattern Discovery Algorithm
下载PDF
导出
摘要 针对目前时间序列模式发现中使用的时间序列相似性度量易受尺度(scale)和平移的影响,不适应基于形状的时间序列模式发现,本文提出了一种重标和平移不变的时间序列相似性度量:Sh 度量,给出度量的性质及其证明。同时提出了基于Sh度量的时间序列形状模式发现算法,并对算法的有限次迭代终止性和时间复杂性进行了证明。论文最后通过对人工数据和太阳黑子数据的实验证明了本文提出的Sh度量及基于形状的时间序列模式发现算法的有效性。 Pattern discovery from time series is of fundamental importance. One of the largest groups of technique for the problem of pattern discovery in time series is clustering based on some kind of similarity metric. The similarity metric recently used in time series clustering are affected by the scale and baseline so that this is a problem as objective is to capture the shape, not the value. In order to surmount the problem, another similarity metric is proposed based on shape similarity, which is called Sh metric. We give the property of this similarity and corresponding proof. Then we propose a time series shape pattern discovery algorithm based on Sh metric, prove that the algorithm is terminated in finite iteration, and provide the time complexity. Finally the experiments on synthetic datasets and sunspot datasets demonstrate that the time series shape similarity metric: Sh metric and the time series shape pattern algorithm based on Sh metric are effective.
出处 《信号处理》 CSCD 2004年第6期548-551,共4页 Journal of Signal Processing
关键词 模式发现 相似性度量 时间序列模式 发现算法 时间复杂性 平移不变 数据 实验证明 迭代 形状 <Keyword>shape similarity metric pattern discovery time series data mining algorithm
  • 相关文献

参考文献6

  • 1R. J. Povinelli and X. Feng, "Data Mining of Multiple Non-stationary Time Series," Proc. Artificial Neural Networks in Engineering, pp. 511-516, 1999.
  • 2S. Policker and A. B. Geva, "Non-stationary signal analysis using temporal clustering," Proc. of the 1998 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing VIII, pp. 304 -312,1998.
  • 3A. B. Geva, "Non-stationary time series prediction using fuzzy clustering," Fuzzy Information Processing Society,NAFIPS. 18th International Conference of the North American, pp. 413-417, 1999.
  • 4Tak-Chung Fu, et al, "Pattern Discovery from Stock Time Series Using Self-Organizing Maps" Workshop Notes of The 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2001)Workshop on Temporal Data Mining, pp. 27-37, 2001.
  • 5Gautum Das, Dimitrios Gunopulos and Heikki Marmila,"Finding similar time series", Principles of Data Mining and Knowledge Discovery (PKDD'97)
  • 6B. Bollobas, G. Das, D. Gunopulos and H. Mannila,'Time-Series Similarity Problems and Well-Separated Geometric Sets". Nordic Journal on Computing, 200 1.

同被引文献27

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部