摘要
本文得到了Burgers—Mkdv方程和它的Lax表示;通过引进一个复形式的辛结构,产生了一个完全可积的复系统。进一步借助于可换流的对合解给出了孤子方程解的对合表示。
In this paper, the coupled Burgers-Mkdv equation and its Lax representation are obtained. By means of the complex form of standard symplectic constructions, a complex finite dimensional Liouville completely imtegrable system is generated. So, the solutions of the soliton equation are obtained by making use of the solutions of commutative flows.
出处
《石家庄铁道学院学报》
1993年第1期11-18,共8页
Journal of Shijiazhuang Railway Institute
关键词
辛结构
复系统
对合解
微分几何
symplectic construction
complex system
involutive solution