摘要
首先给出了用Poisson积分公式表示的调和方程边值问题的解.然后利用延拓思想将一般区域上的问题转化为圆域上的问题,进而获得了所需的Poisson积分方程.最后,介绍了求解调和方程边值问题的线性配置算法,并证明了这种算法具有至少O(h4)精度的逐点强超收敛性.表1,参9.
This paper first gives the solutions represented by Poisson integral formulas to the boundary value problems of harmonic equations.Then using extension idea,we transforms the problem on the common domain to that on the circular domain,and further obtains the Poisson integral equation needed.Finally,we introduces a linear collocation method for solving boundary value problems of harmonic equations,and proves that this method possesses ultraconvergence with at least O(h^4) accuracy in the pointwise sense.1tab.9refs.
出处
《湖南科技大学学报(自然科学版)》
CAS
2004年第4期92-94,共3页
Journal of Hunan University of Science And Technology:Natural Science Edition
基金
国家自然科学基金资助项目(编号:10371038)
关键词
调和方程
边值问题
Poisson积分公式
配置算法
收敛性
边界元
harmonic equations
boundary elements
extension idea
collocation methods
poisson integral equation
ultraconvergence