摘要
Heat transfer coefficients of the quench medium are necessary for heat-treatment simulation. Cooling characteristics of quenching oil vary with kinds and usage greatly. Users are selecting oil solutions that come up to their desired hardness and quenching distortion requirements. In particular cooling performance rises by agitation and decompression. Therefore we identified a heat transfer coefficient by usage and kinds of quenching oil. Cooling characteristics are different greatly by a kind of quenching oil. A difference of a cooling characteristic by a kind of oil depends on a temperature range of a boiling stage and the maximum heat transfer coefficient mainly. On the other hand, in a convection stage, there are few changes in a boiling stage. Even if quenching oil temperature is changed, heat transfer coefficients do not change greatly. When quenching oil stirred, heat transfer coefficients of vapor blanket stage and a convection stage rise, but there are a few changes in a boiling stage. When quenching oil is decompressed a temperature range of a high heat transfer coefficient moves to the low temperature side. In addition, a heat transfer coefficient in a vapor blanket stage comes down. For precision improvement of heat-treatment simulation, it is important that the heat transfer coefficient is calculated in conformity to the on-site use reality.
Heat transfer coefficients of the quench medium are necessary for heat-treatment simulation. Cooling characteristics of quenching oil vary with kinds and usage greatly. Users are selecting oil solutions that come up to their desired hardness and quenching distortion requirements. In particular cooling performance rises by agitation and decompression. Therefore we identified a heat transfer coefficient by usage and kinds of quenching oil. Cooling characteristics are different greatly by a kind of quenching oil. A difference of a cooling characteristic by a kind of oil depends on a temperature range of a boiling stage and the maximum heat transfer coefficient mainly. On the other hand, in a convection stage, there are few changes in a boiling stage. Even if quenching oil temperature is changed, heat transfer coefficients do not change greatly. When quenching oil stirred, heat transfer coefficients of vapor blanket stage and a convection stage rise, but there are a few changes in a boiling stage. When quenching oil is decompressed a temperature range of a high heat transfer coefficient moves to the low temperature side. In addition, a heat transfer coefficient in a vapor blanket stage comes down. For precision improvement of heat-treatment simulation, it is important that the heat transfer coefficient is calculated in conformity to the on-site use reality.
出处
《材料热处理学报》
EI
CAS
CSCD
北大核心
2004年第5期453-456,共4页
Transactions of Materials and Heat Treatment
关键词
传热系数
淬火油
热处理
冷却曲线
heat transfer coefficient, quenching oil, heat-treatment simulation