期刊文献+

Case Depth Measurement of Induction Hardening Using Image Processing

Case Depth Measurement of Induction Hardening Using Image Processing
下载PDF
导出
摘要 Case depth measurement of the induction hardened steel parts is necessary for quality control. Vickers microhardness test is the most industrially accepted method to identify the case depth. But this method is a time consuming one and it requires expensive equipment. The aim of this study is to develop a different method to determine the case depth using image processing. The surface hardened steel samples were cross cut, ground and etched with Nital. The etched macrosectioned specimens were scanned by a scanner. The scanned images were evaluated by the developed software. The principle of the software is to identify the gray level difference. The effective case depths of the surface hardened specimens obtained by Vickers microhardness test and the developed method were compared. It was found that the deviation of the developed method was ±0.12 mm at the case depth range of 0.6 - 2.0 mm and mm at the case depth range of 2.1 - 4.3 mm. The measuring time was only 20% of Vickers microhardness test. The deviation range is much lower than the tolerance case depth specification for induction hardening in general. Case depth measurement of the induction hardened steel parts is necessary for quality control. Vickers microhardness test is the most industrially accepted method to identify the case depth. But this method is a time consuming one and it requires expensive equipment. The aim of this study is to develop a different method to determine the case depth using image processing. The surface hardened steel samples were cross cut, ground and etched with Nital. The etched macrosectioned specimens were scanned by a scanner. The scanned images were evaluated by the developed software. The principle of the software is to identify the gray level difference. The effective case depths of the surface hardened specimens obtained by Vickers microhardness test and the developed method were compared. It was found that the deviation of the developed method was ±0.12 mm at the case depth range of 0.6 - 2.0 mm and mm at the case depth range of 2.1 - 4.3 mm. The measuring time was only 20% of Vickers microhardness test. The deviation range is much lower than the tolerance case depth specification for induction hardening in general.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第5期564-566,共3页 Transactions of Materials and Heat Treatment
关键词 图像处理 表面硬化深度 感应淬火 质量控制 Case Depth Measurement, Induction Hardening, Image Processing
  • 相关文献

参考文献3

  • 1Rob Simons. Innovation in Gaging Total Case Depth. Heat Treating Progress. ASM International, 2001, 33-34,
  • 2Ferrous Material & Metallurgy I. JIS Handbook, 2002
  • 3Volume 4 : Heat Treatment. ASM Handbook, 1991

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部