期刊文献+

2m次Bèzier曲线自适应降次逼近算法

2m-Degree Bézier Plane Parametric Curves 1-Order Reduction Approximation and it's Error Analysis
下载PDF
导出
摘要 给出了封闭的2m次Bèzier曲线的降次逼近公式,并讨论了相应的逼近误差。文章工作除了具有传统的端点约束、C1—约束外,还具有以下特点:首先,基于欧几里德范数讨论逼近误差,更加符合人们的认识;其次,对于分段降阶逼近的情形,首先考虑并采用了选择拐点的策略;第三,考虑并采用了选择极大值点的策略。大量数值试验表明:第二、三两条策略的采用可以在很大程度上减少了2m-1次Bèzier曲线段达到逼近2m次Bèzier平面曲线的容差要求。 Presents an algorithm for approximating an n=2m degree Bézier plane parametric curves using(2m-1)th degree Bézier plane parametric curves.Then,the error analysis of the algorithm is discussed.Also gives a formula of computing error in order-reduction of Bézier plane parametric curves and original curves.The representations in closed form for the coefficients and the error bound are very useful to user of Computer Graphics,CAGD or CAD/CAM systems.Using the error bound in the closed form,a simple subdivision scheme for C1-constrained and end-constrained order-reduction of a plane parametric curve,and numerical result is compared visually to that of the best order-reduction method.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第1期64-66,173,共4页 Computer Engineering and Applications
基金 国家自然科学基金项目(编号:60273054) 教育部博士点基金项目(编号:20020335070) 浙江省自然科学基金项目(编号:698022)
关键词 Bèzier曲线 降次逼近拐点 分割算法 误差估计 Bézier plane parametric curves,order-reduction approximation,inflect,subdivision algorithm,error analysis
  • 相关文献

参考文献9

  • 1Ahn YJ.Degree Reduction of Bézier Curves Using Constrained Chebyshev Polynomials of The Second Kind[J].ANZIAM J,2002 ;45 : 1 - 11.
  • 2Pank YB,Chui UJ.Degree Reduction of B6zier Curves and It's Error Analysis[J].Austral Soc Ser B, 1997 ;36: 399-413.
  • 3Hu Shimin,Sun Jiaguang,Jin Tongguang et al.Approximate degree reduction of B6zier curves[J].Tsinghua Science & Technology, 1998;3(2) :977-1000.
  • 4Farin G.Aigofithms for rational curves[J].Computer Aided Design,1983; 15(2) :73-77.
  • 5Watkins MA,Worsey AJ.Degree reduction of B6zier curves[J].ComputerAided Design, 1988 ;20(7) :398-405.
  • 6Eck M.Degree reduction of Bézier curves[J].Computer Aided Geo metric Design, 1993 ; 10(3,4) :237-251.
  • 7Eck M.Least squares degree reduction of Bézier curves[J].Computer Aided Design, 1995 ;27 ( 11 ) : 845-851.
  • 8Bogacki P,Weinstein S E,Xu Y.Degree reduction of Bézier curves by uniform approximation with end point interpolation[J].Computer Aided Design,1995;27(9) :651-661.
  • 9白保钢 金小刚.三次Bezier曲线自适应降阶方法及其应用[J].计算机学报,2000,(5):537-540.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部