期刊文献+

无网格法计算误差分析 被引量:2

Error analysis with the meshless method
下载PDF
导出
摘要 探讨了无网格法中形函数的性态及对计算结果的影响 ,讨论了无网格法产生误差的原因 .主要分析了无网格伽辽金法 (EFGM )节点不良分布以及采用一般高次多项式基构造形函数时 ,致使形函数中矩阵A(X)病态 ,从而导致全局数值解振荡的原因 .就不同的基函数对插值函数及无网格法的计算精度的影响作了分析比较 ,得出了基函数的选取标准 ,算例说明使用三次基函数计算精度最高 . The properties and characteristics of the shape functions in meshless method and their influence on the numerical results were dealt with. The reasons why the error appeared in this method were discussed. It was showed that the shape matrix A ( X ) was ill conditioned when Element Free Galerkin method (EFGM) used high order polynomial basis and the nodes were ill distributed. The influence of different basic functions on the interpolation functions and the computed accuracy were analyzed and compared. Based on the above analysis, the criterion for choosing the basis function was obtained. The numerical examples were given to show that the highest accuracy can be achieved by using cubic basis function.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第1期99-101,共3页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 北京市自然科学基金资助项目 (30 330 12 ) 中国科学院岩土力学重点实验室资助项目 (Z110 2 0 2 ) .
关键词 无网格法 数值振荡 罚函数法 误差 meshless method numerical oscillation penal function method error
  • 相关文献

参考文献2

  • 1Belytschko T, Liu Y Y, Gu L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994, 37:229-256.
  • 2Beissel S, Belytschko T. Nodal integr;ltion of the element-free Galerkin method[J]. Comput Methods Appl Mech Engrg, 1996, 139:205-230.

同被引文献17

  • 1Peng M,Cheng Y.A boundary element-free method (BEFM) for two-dimensional potential problems[J].Eng Anal Bound Elem,2009,33(1):77-82.
  • 2Xiao-lin Li,Jia-lin Zhu,Shou-gui Zhang.A hybrid radial boundary node method based on radial basis point interpolation[J].Eng Anal Bound Elem,2009,33(11):1273-1283.
  • 3Hui Wang,Qing-Hua Qin.A meshless method for generalized linear or nonlinear Poisson-type problems[J].Eng Anal Bound Elem,2006,30:515~521.
  • 4Zhang J,Tanaka M,Matsumoto T.Meshless analysis of potential problems in three dimensions with the hybrid boundary node method[J].Int J Numer Methods Eng,2004,59:1147-68.
  • 5Xiao-lin Li,Jia-lin Zhu.The method of fundamental solutions for nonlinear elliptic problems[J].Eng Anal Bound Elem,2009,33:322-329.
  • 6杜功焕,朱哲民,龚秀芬.声学基础[M].3版.南京:南京大学出版社,2012.
  • 7Nayroles B,Touzot G, Villon P. Generalizing the fi-nite element method ? diffuse approximation and dif-fuse element[J]. Computational Mechanics,1992,10(5): 307-318.
  • 8Belytschko T,Lu Y Y, Gu L. Element-free galerkinmethods [ J ]. International Journal for NumericalMethods in Engineering, 1994,37(2) : 229-256.
  • 9Visser R, A boundary element approach to acousticradiation and source identification[D]. Enschede: De-partment of Engineering Technical Sciences,Univer-sity of Twente, 2004.
  • 10Koopmann G H,Song L, Fahnline J B. A method forcomputing acoustic fields based on the principle ofwave superposition [J]. Journal of Acoustic SocietyAmerica, 1989,86(6): 2433-2438.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部