期刊文献+

STATIONARY SOLUTION FOR A STOCHASTIC LINARD EQUATION WITH MARKOVIAN SWITCHING

STATIONARY SOLUTION FOR A STOCHASTIC LINARD EQUATION WITH MARKOVIAN SWITCHING
下载PDF
导出
摘要 This paper considers a stochastic Lienard equation with Markovian switching. The Feller continuity of its solution is proved by the coupling method and a truncation argument. The existence of a stationary solution for the equation is also proved under the Foster-Lyapunov drift condition. This paper considers a stochastic Lienard equation with Markovian switching. The Feller continuity of its solution is proved by the coupling method and a truncation argument. The existence of a stationary solution for the equation is also proved under the Foster-Lyapunov drift condition.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2005年第1期95-104,共10页 数学物理学报(B辑英文版)
基金 ThisprojectissupportedbytheNationalNaturalScienceFoundationofChina(19901001)theSRFforROCS,SEM.
关键词 COUPLING TRUNCATION feller continuity stationary solution Coupling, truncation, feller continuity, stationary solution
  • 相关文献

参考文献1

二级参考文献7

  • 1Koeller RC.Polynomial operators,Stieltjes convolution and fractional calculus in hereditary mechanics[].Acta Mechanica.1986
  • 2Koh CG,Kelly JM.Application of fractional derivatives to seismic analysis of base-isolated models[].Earthquake Engineering and Structural Dynamics.1990
  • 3Miller KS,Ross B.An Introduction to Fractional Calculus and Fractional Differential and Equations[]..1993
  • 4Zhang W,Shimizu N.Numerical algorithm for dynamic problems involving fractional operators[].JSME International Journal.1998
  • 5Papoulia KD,Kelly JM.Visco-hyperelastic model for filled rubbers use in vibration[].J of Engineering Materials and TechnologyTrans of the ASME.1997
  • 6Padovan J.Computational algorithms for FE formulations involving fractional operators[].Computational Mechanics.1987
  • 7Makris N.Three-dimensional constitutive viscoelastic laws with fractional order time derivatives[].Journal of Rheology.1997

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部