期刊文献+

基于比率依赖的HIV-1模型的数学分析 被引量:2

Mathematical analysis for a ratio-dependent model of HIV-1 infection
下载PDF
导出
摘要 构造和分析了一个基于比率依赖的模型,此模型包括细胞内部的时滞,综合反转病毒疗法,具有感染性的T细胞和不具感染性的T细胞.细胞内部的时滞由Γ分布来模拟,这样可以将一般的泛函微分方程(FDE)系统转化为常微分方程(ODE)系统或离散微分方程(DDE)系统.本文讨论了这两种特殊情况下平衡点的稳定性.当时滞是弱时滞时FDE模型可转化成ODE模型,并且得到了FDE模型平衡点的稳定性条件. This paper develops and analyzes a ratio-dependent model that includes an intracellular delays, combination antiretrovial therapy and the dynamics of both infected and uninfected T-cells. The intracellular delay is modelled by a gamma distribution, which can lead the general model (FDE) to the ODE model or the DDE model as special cases. Stability is discussed for the two special cases. The FDE model can be converted into an ODE model when the delay kernel is the weak delay. The stability for the FDE model is obtained under appropriate conditions.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 2004年第4期7-12,共6页 Journal of Henan Normal University(Natural Science Edition)
基金 河南省自然科学基金项目资助(1999110011)
关键词 HIV-1 比率依赖 时滞微分方程 稳定性分析 HIV-1 ratio-dependent delay differential equations stability analysis
  • 相关文献

参考文献4

  • 1Nelson P, Perelson A. Mathematical analysis of delay differential equation models of HIV-1 infection[J]. Math Biosci, 2002, 179: 73.
  • 2Verotta D, Sohaedeli F. Non-linear dynamics models characterizing long-term virological data from AIDS clinical trials[J]. Math Biosci, 2002, 176: 163.
  • 3Perelson A, Neunann A, Markowitz M. HIV-1 dynamics in vivo, virion clearance rate, infected cell life-span,and viral generation time[J]. Science, 1996, 271: 1 582.
  • 4Wiggins S. Introduction to Applied Nonlinear Dynamical Systems and Chaos[M].Berlin: Springer, 1990. 37.

同被引文献19

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部